Matches in SemOpenAlex for { <https://semopenalex.org/work/W2964109950> ?p ?o ?g. }
- W2964109950 endingPage "372" @default.
- W2964109950 startingPage "359" @default.
- W2964109950 abstract "Stochastic configuration networks (SCNs) as a class of randomized learner model have been successfully employed in data analytics due to its universal approximation capability and fast modeling property. The technical essence lies in stochastically configuring the hidden nodes (or basis functions) based on a supervisory mechanism rather than data-independent randomization as usually adopted for building randomized neural networks. Given image data modeling tasks, the use of 1-D SCNs potentially demolishes the spatial information of images, and may result in undesirable performance. This paper extends the original SCNs to a 2-D version, called 2DSCNs, for fast building randomized learners with matrix inputs. Some theoretical analysis on the goodness of 2DSCNs against SCNs, including the complexity of the random parameter space and the superiority of generalization, are presented. Empirical results over one regression example, four benchmark handwritten digit classification tasks, two human face recognition datasets, as well as one natural image database, demonstrate that the proposed 2DSCNs perform favorably and show good potential for image data analytics." @default.
- W2964109950 created "2019-07-30" @default.
- W2964109950 creator A5015252113 @default.
- W2964109950 creator A5086623091 @default.
- W2964109950 date "2021-01-01" @default.
- W2964109950 modified "2023-10-15" @default.
- W2964109950 title "2-D Stochastic Configuration Networks for Image Data Analytics" @default.
- W2964109950 cites W1498436455 @default.
- W2964109950 cites W1786513448 @default.
- W2964109950 cites W1965766334 @default.
- W2964109950 cites W1986278072 @default.
- W2964109950 cites W1996640396 @default.
- W2964109950 cites W1996692737 @default.
- W2964109950 cites W1997011019 @default.
- W2964109950 cites W2001629412 @default.
- W2964109950 cites W2009741049 @default.
- W2964109950 cites W2021547250 @default.
- W2964109950 cites W2097117768 @default.
- W2964109950 cites W2099579348 @default.
- W2964109950 cites W2103560185 @default.
- W2964109950 cites W2112796928 @default.
- W2964109950 cites W2117539524 @default.
- W2964109950 cites W2135046866 @default.
- W2964109950 cites W2183341477 @default.
- W2964109950 cites W2194775991 @default.
- W2964109950 cites W2586160710 @default.
- W2964109950 cites W2586224208 @default.
- W2964109950 cites W2593382986 @default.
- W2964109950 cites W2618410756 @default.
- W2964109950 cites W2620858446 @default.
- W2964109950 cites W2726679582 @default.
- W2964109950 cites W2728075319 @default.
- W2964109950 cites W2755116089 @default.
- W2964109950 cites W2759518055 @default.
- W2964109950 cites W2891053631 @default.
- W2964109950 cites W2942877765 @default.
- W2964109950 cites W2962986578 @default.
- W2964109950 cites W2963446712 @default.
- W2964109950 cites W4255455317 @default.
- W2964109950 doi "https://doi.org/10.1109/tcyb.2019.2925883" @default.
- W2964109950 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31329148" @default.
- W2964109950 hasPublicationYear "2021" @default.
- W2964109950 type Work @default.
- W2964109950 sameAs 2964109950 @default.
- W2964109950 citedByCount "36" @default.
- W2964109950 countsByYear W29641099502019 @default.
- W2964109950 countsByYear W29641099502020 @default.
- W2964109950 countsByYear W29641099502021 @default.
- W2964109950 countsByYear W29641099502022 @default.
- W2964109950 countsByYear W29641099502023 @default.
- W2964109950 crossrefType "journal-article" @default.
- W2964109950 hasAuthorship W2964109950A5015252113 @default.
- W2964109950 hasAuthorship W2964109950A5086623091 @default.
- W2964109950 hasConcept C115961682 @default.
- W2964109950 hasConcept C119857082 @default.
- W2964109950 hasConcept C124101348 @default.
- W2964109950 hasConcept C13280743 @default.
- W2964109950 hasConcept C134306372 @default.
- W2964109950 hasConcept C153180895 @default.
- W2964109950 hasConcept C154945302 @default.
- W2964109950 hasConcept C177148314 @default.
- W2964109950 hasConcept C185798385 @default.
- W2964109950 hasConcept C205649164 @default.
- W2964109950 hasConcept C2777212361 @default.
- W2964109950 hasConcept C33923547 @default.
- W2964109950 hasConcept C41008148 @default.
- W2964109950 hasConcept C79158427 @default.
- W2964109950 hasConceptScore W2964109950C115961682 @default.
- W2964109950 hasConceptScore W2964109950C119857082 @default.
- W2964109950 hasConceptScore W2964109950C124101348 @default.
- W2964109950 hasConceptScore W2964109950C13280743 @default.
- W2964109950 hasConceptScore W2964109950C134306372 @default.
- W2964109950 hasConceptScore W2964109950C153180895 @default.
- W2964109950 hasConceptScore W2964109950C154945302 @default.
- W2964109950 hasConceptScore W2964109950C177148314 @default.
- W2964109950 hasConceptScore W2964109950C185798385 @default.
- W2964109950 hasConceptScore W2964109950C205649164 @default.
- W2964109950 hasConceptScore W2964109950C2777212361 @default.
- W2964109950 hasConceptScore W2964109950C33923547 @default.
- W2964109950 hasConceptScore W2964109950C41008148 @default.
- W2964109950 hasConceptScore W2964109950C79158427 @default.
- W2964109950 hasFunder F4320321001 @default.
- W2964109950 hasFunder F4320321543 @default.
- W2964109950 hasIssue "1" @default.
- W2964109950 hasLocation W29641099501 @default.
- W2964109950 hasOpenAccess W2964109950 @default.
- W2964109950 hasPrimaryLocation W29641099501 @default.
- W2964109950 hasRelatedWork W2028665553 @default.
- W2964109950 hasRelatedWork W2086519370 @default.
- W2964109950 hasRelatedWork W2087343574 @default.
- W2964109950 hasRelatedWork W2105860728 @default.
- W2964109950 hasRelatedWork W2130974462 @default.
- W2964109950 hasRelatedWork W2378211422 @default.
- W2964109950 hasRelatedWork W2535915176 @default.
- W2964109950 hasRelatedWork W3158763334 @default.
- W2964109950 hasRelatedWork W4321353415 @default.
- W2964109950 hasRelatedWork W972276598 @default.
- W2964109950 hasVolume "51" @default.