Matches in SemOpenAlex for { <https://semopenalex.org/work/W2964110963> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W2964110963 abstract "The enormous efforts spent on collecting naturalistic driving data in the recent years has resulted in an expansion of publicly available traffic datasets, which has the potential to assist the development of the self-driving vehicles. However, we found that many of the attempts to utilize these datasets have failed in practice due to a lack of usability concern from the organizations that host these collected data. For example, extracting data associated with certain critical conditions from naturalistic driving data organized in chronological order may not be convenient for a vehicle engineer that doesn't have big data analytics experiences. To address the general usability challenges of these publicly available traffic datasets, we propose TrafficNet, a large-scale and extensible library of naturalistic driving scenarios, aiming at bridging the gap between research datasets and practically usable information for vehicle engineers and researchers. The proposed web-based driving scenario database preprocesses massive raw traffic data collected in chronological order into an organized scenario-based dataset by applying a set of categorization algorithms to label the naturalistic driving data with six different critical driving scenarios. TrafficNet opens not only the scenario library but also the source code of these categorization methods to the public, which will foster more sophisticated and accurate scenario-based categorization algorithms to advance the intelligent transportation research. The source code and the scenario database can be accessed at https://github.com/TrafficNet." @default.
- W2964110963 created "2019-07-30" @default.
- W2964110963 creator A5003439325 @default.
- W2964110963 creator A5010879885 @default.
- W2964110963 creator A5037644321 @default.
- W2964110963 date "2017-10-01" @default.
- W2964110963 modified "2023-09-30" @default.
- W2964110963 title "TrafficNet: An open naturalistic driving scenario library" @default.
- W2964110963 cites W2057483198 @default.
- W2964110963 cites W2062488183 @default.
- W2964110963 cites W2438413413 @default.
- W2964110963 cites W2584223592 @default.
- W2964110963 cites W2594287830 @default.
- W2964110963 doi "https://doi.org/10.1109/itsc.2017.8317860" @default.
- W2964110963 hasPublicationYear "2017" @default.
- W2964110963 type Work @default.
- W2964110963 sameAs 2964110963 @default.
- W2964110963 citedByCount "29" @default.
- W2964110963 countsByYear W29641109632018 @default.
- W2964110963 countsByYear W29641109632019 @default.
- W2964110963 countsByYear W29641109632020 @default.
- W2964110963 countsByYear W29641109632021 @default.
- W2964110963 countsByYear W29641109632022 @default.
- W2964110963 countsByYear W29641109632023 @default.
- W2964110963 crossrefType "proceedings-article" @default.
- W2964110963 hasAuthorship W2964110963A5003439325 @default.
- W2964110963 hasAuthorship W2964110963A5010879885 @default.
- W2964110963 hasAuthorship W2964110963A5037644321 @default.
- W2964110963 hasBestOaLocation W29641109632 @default.
- W2964110963 hasConcept C107457646 @default.
- W2964110963 hasConcept C124101348 @default.
- W2964110963 hasConcept C136764020 @default.
- W2964110963 hasConcept C154945302 @default.
- W2964110963 hasConcept C15744967 @default.
- W2964110963 hasConcept C167699689 @default.
- W2964110963 hasConcept C170130773 @default.
- W2964110963 hasConcept C174348530 @default.
- W2964110963 hasConcept C177264268 @default.
- W2964110963 hasConcept C199360897 @default.
- W2964110963 hasConcept C2522767166 @default.
- W2964110963 hasConcept C2780615836 @default.
- W2964110963 hasConcept C38652104 @default.
- W2964110963 hasConcept C41008148 @default.
- W2964110963 hasConcept C48044578 @default.
- W2964110963 hasConcept C75684735 @default.
- W2964110963 hasConcept C77088390 @default.
- W2964110963 hasConcept C77805123 @default.
- W2964110963 hasConcept C94124525 @default.
- W2964110963 hasConceptScore W2964110963C107457646 @default.
- W2964110963 hasConceptScore W2964110963C124101348 @default.
- W2964110963 hasConceptScore W2964110963C136764020 @default.
- W2964110963 hasConceptScore W2964110963C154945302 @default.
- W2964110963 hasConceptScore W2964110963C15744967 @default.
- W2964110963 hasConceptScore W2964110963C167699689 @default.
- W2964110963 hasConceptScore W2964110963C170130773 @default.
- W2964110963 hasConceptScore W2964110963C174348530 @default.
- W2964110963 hasConceptScore W2964110963C177264268 @default.
- W2964110963 hasConceptScore W2964110963C199360897 @default.
- W2964110963 hasConceptScore W2964110963C2522767166 @default.
- W2964110963 hasConceptScore W2964110963C2780615836 @default.
- W2964110963 hasConceptScore W2964110963C38652104 @default.
- W2964110963 hasConceptScore W2964110963C41008148 @default.
- W2964110963 hasConceptScore W2964110963C48044578 @default.
- W2964110963 hasConceptScore W2964110963C75684735 @default.
- W2964110963 hasConceptScore W2964110963C77088390 @default.
- W2964110963 hasConceptScore W2964110963C77805123 @default.
- W2964110963 hasConceptScore W2964110963C94124525 @default.
- W2964110963 hasLocation W29641109631 @default.
- W2964110963 hasLocation W29641109632 @default.
- W2964110963 hasOpenAccess W2964110963 @default.
- W2964110963 hasPrimaryLocation W29641109631 @default.
- W2964110963 hasRelatedWork W2030634827 @default.
- W2964110963 hasRelatedWork W2276272259 @default.
- W2964110963 hasRelatedWork W2530266965 @default.
- W2964110963 hasRelatedWork W2576683119 @default.
- W2964110963 hasRelatedWork W2608950002 @default.
- W2964110963 hasRelatedWork W2734587838 @default.
- W2964110963 hasRelatedWork W2748952813 @default.
- W2964110963 hasRelatedWork W3167102503 @default.
- W2964110963 hasRelatedWork W4224302473 @default.
- W2964110963 hasRelatedWork W4299638067 @default.
- W2964110963 isParatext "false" @default.
- W2964110963 isRetracted "false" @default.
- W2964110963 magId "2964110963" @default.
- W2964110963 workType "article" @default.