Matches in SemOpenAlex for { <https://semopenalex.org/work/W2964120802> ?p ?o ?g. }
Showing items 1 to 75 of
75
with 100 items per page.
- W2964120802 endingPage "257" @default.
- W2964120802 startingPage "255" @default.
- W2964120802 abstract "Metagenomic sequencing techniques produce large data sets of DNA fragments (e.g. reads or contigs) from environmental samples. To understand the microbial communities and functional structures within the samples, metagenomic sequence fragments need to be first assigned to their taxonomic origins from which they were derived (also called “binning”) to facilitate downstream analyses.Arguably the most popular metagenomic binning approaches are alignment-based methods. A sequence fragment is searched against a reference database consisting of full genomes of organisms, and the highest scoring organism is assigned as the taxonomic origin. Although efficient sequence alignment algorithms, including BWA-MEM [1], Bowtie2 [2] and (mega)BLAST [3], can readily be used for this purpose, the computational cost of alignment-based methods becomes prohibitive as the size of the sequence dataset grows dramatically, which is often the case in recent studies.Another completely different binning approach is based on genomic sequence composition, which exploits the sequence characteristics of metagenomic fragments and applies machine learning classification algorithms to assign putative taxnomic origins to all fragments. Since classifiers, such as support vector machines, are trained on whole reference genome sequences beforehand, compositional methods normally are substantially faster than alignment-based methods on large datasets. The rationale behind compositional-based binning methods is based on the fact that different genomes have different conserved sequence composition patterns, such as GC content, codon usage or a particular abundance distribution of consecutive nucleotide k-mers. To design a good compositional-based algorithm, we need to extract informative and discriminative features from the reference genomes. Most existing methods, including PhyloPythia(S) [4, 5], use k-mer frequencies to represent sequence fragments, where k is typically small (e.g. 6 to 10). While longer k-mers, which capture compositional dependency within larger contexts, could potentially lead to higher binning accuracy, they are more prone to noise and errors if used in the supervised setting. Moreover, incorporating long k-mers as features increases computational cost exponentially and requires significantly larger training datasets." @default.
- W2964120802 created "2019-07-30" @default.
- W2964120802 creator A5009826239 @default.
- W2964120802 creator A5040139742 @default.
- W2964120802 creator A5044078921 @default.
- W2964120802 creator A5061177999 @default.
- W2964120802 date "2016-04-01" @default.
- W2964120802 modified "2023-09-26" @default.
- W2964120802 title "Low-Density Locality-Sensitive Hashing Boosts Metagenomic Binning." @default.
- W2964120802 cites W2055043387 @default.
- W2964120802 cites W2083395367 @default.
- W2964120802 cites W2150337627 @default.
- W2964120802 cites W2167669612 @default.
- W2964120802 cites W2170551349 @default.
- W2964120802 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/5260810" @default.
- W2964120802 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/28127592" @default.
- W2964120802 hasPublicationYear "2016" @default.
- W2964120802 type Work @default.
- W2964120802 sameAs 2964120802 @default.
- W2964120802 citedByCount "2" @default.
- W2964120802 countsByYear W29641208022018 @default.
- W2964120802 countsByYear W29641208022022 @default.
- W2964120802 crossrefType "journal-article" @default.
- W2964120802 hasAuthorship W2964120802A5009826239 @default.
- W2964120802 hasAuthorship W2964120802A5040139742 @default.
- W2964120802 hasAuthorship W2964120802A5044078921 @default.
- W2964120802 hasAuthorship W2964120802A5061177999 @default.
- W2964120802 hasConcept C104317684 @default.
- W2964120802 hasConcept C124101348 @default.
- W2964120802 hasConcept C141231307 @default.
- W2964120802 hasConcept C15151743 @default.
- W2964120802 hasConcept C192953774 @default.
- W2964120802 hasConcept C2279292 @default.
- W2964120802 hasConcept C2778112365 @default.
- W2964120802 hasConcept C41008148 @default.
- W2964120802 hasConcept C51679486 @default.
- W2964120802 hasConcept C54355233 @default.
- W2964120802 hasConcept C552990157 @default.
- W2964120802 hasConcept C59582021 @default.
- W2964120802 hasConcept C70721500 @default.
- W2964120802 hasConcept C86803240 @default.
- W2964120802 hasConceptScore W2964120802C104317684 @default.
- W2964120802 hasConceptScore W2964120802C124101348 @default.
- W2964120802 hasConceptScore W2964120802C141231307 @default.
- W2964120802 hasConceptScore W2964120802C15151743 @default.
- W2964120802 hasConceptScore W2964120802C192953774 @default.
- W2964120802 hasConceptScore W2964120802C2279292 @default.
- W2964120802 hasConceptScore W2964120802C2778112365 @default.
- W2964120802 hasConceptScore W2964120802C41008148 @default.
- W2964120802 hasConceptScore W2964120802C51679486 @default.
- W2964120802 hasConceptScore W2964120802C54355233 @default.
- W2964120802 hasConceptScore W2964120802C552990157 @default.
- W2964120802 hasConceptScore W2964120802C59582021 @default.
- W2964120802 hasConceptScore W2964120802C70721500 @default.
- W2964120802 hasConceptScore W2964120802C86803240 @default.
- W2964120802 hasLocation W29641208021 @default.
- W2964120802 hasOpenAccess W2964120802 @default.
- W2964120802 hasPrimaryLocation W29641208021 @default.
- W2964120802 hasRelatedWork W2053421025 @default.
- W2964120802 hasRelatedWork W2141920662 @default.
- W2964120802 hasRelatedWork W2172071284 @default.
- W2964120802 hasRelatedWork W2780418527 @default.
- W2964120802 hasRelatedWork W2890995455 @default.
- W2964120802 hasRelatedWork W2897233545 @default.
- W2964120802 hasRelatedWork W2926763004 @default.
- W2964120802 hasRelatedWork W3126673655 @default.
- W2964120802 hasRelatedWork W3191765096 @default.
- W2964120802 hasRelatedWork W4226342948 @default.
- W2964120802 hasVolume "9649" @default.
- W2964120802 isParatext "false" @default.
- W2964120802 isRetracted "false" @default.
- W2964120802 magId "2964120802" @default.
- W2964120802 workType "article" @default.