Matches in SemOpenAlex for { <https://semopenalex.org/work/W2964125220> ?p ?o ?g. }
- W2964125220 endingPage "98" @default.
- W2964125220 startingPage "71" @default.
- W2964125220 abstract "We show how solutions to a large class of partial differential equations with nonlocal Riccati-type nonlinearities can be generated from the corresponding linearized equations, from arbitrary initial data. It is well known that evolutionary matrix Riccati equations can be generated by projecting linear evolutionary flows on a Stiefel manifold onto a coordinate chart of the underlying Grassmann manifold. Our method relies on extending this idea to the infinite dimensional case. The key is an integral equation analogous to the Marchenko equation in integrable systems, that represents the coodinate chart map. We show explicitly how to generate such solutions to scalar partial differential equations of arbitrary order with nonlocal quadratic nonlinearities using our approach. We provide numerical simulations that demonstrate the generation of solutions to Fisher–Kolmogorov–Petrovskii–Piskunov equations with nonlocal nonlinearities. We also indicate how the method might extend to more general classes of nonlinear partial differential systems." @default.
- W2964125220 created "2019-07-30" @default.
- W2964125220 creator A5018358141 @default.
- W2964125220 creator A5035935039 @default.
- W2964125220 creator A5064135823 @default.
- W2964125220 creator A5083273510 @default.
- W2964125220 date "2018-01-01" @default.
- W2964125220 modified "2023-10-16" @default.
- W2964125220 title "Grassmannian Flows and Applications to Nonlinear Partial Differential Equations" @default.
- W2964125220 cites W1427593441 @default.
- W2964125220 cites W1862643077 @default.
- W2964125220 cites W1971738255 @default.
- W2964125220 cites W1980138746 @default.
- W2964125220 cites W1982554459 @default.
- W2964125220 cites W1988076923 @default.
- W2964125220 cites W1990316872 @default.
- W2964125220 cites W1997602286 @default.
- W2964125220 cites W1998717724 @default.
- W2964125220 cites W1999873750 @default.
- W2964125220 cites W2021090869 @default.
- W2964125220 cites W2022443517 @default.
- W2964125220 cites W2023325192 @default.
- W2964125220 cites W2026507977 @default.
- W2964125220 cites W2033803838 @default.
- W2964125220 cites W2040179286 @default.
- W2964125220 cites W2042132473 @default.
- W2964125220 cites W2064420703 @default.
- W2964125220 cites W2077087555 @default.
- W2964125220 cites W2077191608 @default.
- W2964125220 cites W2086673715 @default.
- W2964125220 cites W2087924427 @default.
- W2964125220 cites W2103304430 @default.
- W2964125220 cites W232576746 @default.
- W2964125220 cites W2476363355 @default.
- W2964125220 cites W2489016459 @default.
- W2964125220 cites W2963614811 @default.
- W2964125220 cites W3103434641 @default.
- W2964125220 cites W3106017980 @default.
- W2964125220 cites W3122064450 @default.
- W2964125220 cites W4238792424 @default.
- W2964125220 cites W4243324034 @default.
- W2964125220 cites W4243872399 @default.
- W2964125220 doi "https://doi.org/10.1007/978-3-030-01593-0_3" @default.
- W2964125220 hasPublicationYear "2018" @default.
- W2964125220 type Work @default.
- W2964125220 sameAs 2964125220 @default.
- W2964125220 citedByCount "8" @default.
- W2964125220 countsByYear W29641252202019 @default.
- W2964125220 countsByYear W29641252202020 @default.
- W2964125220 countsByYear W29641252202021 @default.
- W2964125220 countsByYear W29641252202022 @default.
- W2964125220 countsByYear W29641252202023 @default.
- W2964125220 crossrefType "book-chapter" @default.
- W2964125220 hasAuthorship W2964125220A5018358141 @default.
- W2964125220 hasAuthorship W2964125220A5035935039 @default.
- W2964125220 hasAuthorship W2964125220A5064135823 @default.
- W2964125220 hasAuthorship W2964125220A5083273510 @default.
- W2964125220 hasBestOaLocation W29641252202 @default.
- W2964125220 hasConcept C101487385 @default.
- W2964125220 hasConcept C121332964 @default.
- W2964125220 hasConcept C134306372 @default.
- W2964125220 hasConcept C158622935 @default.
- W2964125220 hasConcept C186219872 @default.
- W2964125220 hasConcept C200741047 @default.
- W2964125220 hasConcept C2524010 @default.
- W2964125220 hasConcept C28826006 @default.
- W2964125220 hasConcept C33923547 @default.
- W2964125220 hasConcept C45473103 @default.
- W2964125220 hasConcept C51544822 @default.
- W2964125220 hasConcept C57691317 @default.
- W2964125220 hasConcept C62520636 @default.
- W2964125220 hasConcept C64057670 @default.
- W2964125220 hasConcept C78045399 @default.
- W2964125220 hasConcept C84629840 @default.
- W2964125220 hasConcept C93779851 @default.
- W2964125220 hasConceptScore W2964125220C101487385 @default.
- W2964125220 hasConceptScore W2964125220C121332964 @default.
- W2964125220 hasConceptScore W2964125220C134306372 @default.
- W2964125220 hasConceptScore W2964125220C158622935 @default.
- W2964125220 hasConceptScore W2964125220C186219872 @default.
- W2964125220 hasConceptScore W2964125220C200741047 @default.
- W2964125220 hasConceptScore W2964125220C2524010 @default.
- W2964125220 hasConceptScore W2964125220C28826006 @default.
- W2964125220 hasConceptScore W2964125220C33923547 @default.
- W2964125220 hasConceptScore W2964125220C45473103 @default.
- W2964125220 hasConceptScore W2964125220C51544822 @default.
- W2964125220 hasConceptScore W2964125220C57691317 @default.
- W2964125220 hasConceptScore W2964125220C62520636 @default.
- W2964125220 hasConceptScore W2964125220C64057670 @default.
- W2964125220 hasConceptScore W2964125220C78045399 @default.
- W2964125220 hasConceptScore W2964125220C84629840 @default.
- W2964125220 hasConceptScore W2964125220C93779851 @default.
- W2964125220 hasLocation W29641252201 @default.
- W2964125220 hasLocation W29641252202 @default.
- W2964125220 hasOpenAccess W2964125220 @default.
- W2964125220 hasPrimaryLocation W29641252201 @default.
- W2964125220 hasRelatedWork W1972779995 @default.
- W2964125220 hasRelatedWork W1997941038 @default.