Matches in SemOpenAlex for { <https://semopenalex.org/work/W2964130120> ?p ?o ?g. }
- W2964130120 endingPage "773" @default.
- W2964130120 startingPage "703" @default.
- W2964130120 abstract "In phase retrieval, we want to recover an unknown signal $${{varvec{x}}}in {{mathbb {C}}}^d$$ from n quadratic measurements of the form $$y_i = |langle {{varvec{a}}}_i,{{varvec{x}}}rangle |^2+w_i$$ , where $${{varvec{a}}}_iin {{mathbb {C}}}^d$$ are known sensing vectors and $$w_i$$ is measurement noise. We ask the following weak recovery question: What is the minimum number of measurements n needed to produce an estimator $${hat{{{varvec{x}}}}}({{varvec{y}}})$$ that is positively correlated with the signal $${{varvec{x}}}$$ ? We consider the case of Gaussian vectors $${{varvec{a}}}_i$$ . We prove that—in the high-dimensional limit—a sharp phase transition takes place, and we locate the threshold in the regime of vanishingly small noise. For $$nle d-o(d)$$ , no estimator can do significantly better than random and achieve a strictly positive correlation. For $$nge d+o(d)$$ , a simple spectral estimator achieves a positive correlation. Surprisingly, numerical simulations with the same spectral estimator demonstrate promising performance with realistic sensing matrices. Spectral methods are used to initialize non-convex optimization algorithms in phase retrieval, and our approach can boost the performance in this setting as well. Our impossibility result is based on classical information-theoretic arguments. The spectral algorithm computes the leading eigenvector of a weighted empirical covariance matrix. We obtain a sharp characterization of the spectral properties of this random matrix using tools from free probability and generalizing a recent result by Lu and Li. Both the upper bound and lower bound generalize beyond phase retrieval to measurements $$y_i$$ produced according to a generalized linear model. As a by-product of our analysis, we compare the threshold of the proposed spectral method with that of a message passing algorithm." @default.
- W2964130120 created "2019-07-30" @default.
- W2964130120 creator A5011999109 @default.
- W2964130120 creator A5061114394 @default.
- W2964130120 date "2018-09-04" @default.
- W2964130120 modified "2023-09-25" @default.
- W2964130120 title "Fundamental Limits of Weak Recovery with Applications to Phase Retrieval" @default.
- W2964130120 cites W1625271478 @default.
- W2964130120 cites W1833998552 @default.
- W2964130120 cites W1901790663 @default.
- W2964130120 cites W1959879694 @default.
- W2964130120 cites W1970377488 @default.
- W2964130120 cites W2000157792 @default.
- W2964130120 cites W2002963485 @default.
- W2964130120 cites W2004531067 @default.
- W2964130120 cites W2007593159 @default.
- W2964130120 cites W2011892826 @default.
- W2964130120 cites W2015911499 @default.
- W2964130120 cites W2040192961 @default.
- W2964130120 cites W2044613770 @default.
- W2964130120 cites W2051302879 @default.
- W2964130120 cites W2060581589 @default.
- W2964130120 cites W2067038358 @default.
- W2964130120 cites W2078397124 @default.
- W2964130120 cites W2078582032 @default.
- W2964130120 cites W2082029531 @default.
- W2964130120 cites W2087483236 @default.
- W2964130120 cites W2088332638 @default.
- W2964130120 cites W2097132843 @default.
- W2964130120 cites W2099551908 @default.
- W2964130120 cites W2102019642 @default.
- W2964130120 cites W2106005123 @default.
- W2964130120 cites W2108394050 @default.
- W2964130120 cites W2115645605 @default.
- W2964130120 cites W2120058354 @default.
- W2964130120 cites W2121716262 @default.
- W2964130120 cites W2123202508 @default.
- W2964130120 cites W2145080587 @default.
- W2964130120 cites W2151781750 @default.
- W2964130120 cites W2156719288 @default.
- W2964130120 cites W2163353827 @default.
- W2964130120 cites W2164595191 @default.
- W2964130120 cites W2166670884 @default.
- W2964130120 cites W2167850383 @default.
- W2964130120 cites W2338490279 @default.
- W2964130120 cites W2542482481 @default.
- W2964130120 cites W2571527823 @default.
- W2964130120 cites W2761315682 @default.
- W2964130120 cites W2962761770 @default.
- W2964130120 cites W2962999772 @default.
- W2964130120 cites W2963072996 @default.
- W2964130120 cites W2963639053 @default.
- W2964130120 cites W2963805962 @default.
- W2964130120 cites W2963841451 @default.
- W2964130120 cites W2963943067 @default.
- W2964130120 cites W2964312599 @default.
- W2964130120 cites W3098848552 @default.
- W2964130120 cites W3102206315 @default.
- W2964130120 doi "https://doi.org/10.1007/s10208-018-9395-y" @default.
- W2964130120 hasPublicationYear "2018" @default.
- W2964130120 type Work @default.
- W2964130120 sameAs 2964130120 @default.
- W2964130120 citedByCount "48" @default.
- W2964130120 countsByYear W29641301202018 @default.
- W2964130120 countsByYear W29641301202019 @default.
- W2964130120 countsByYear W29641301202020 @default.
- W2964130120 countsByYear W29641301202021 @default.
- W2964130120 countsByYear W29641301202022 @default.
- W2964130120 countsByYear W29641301202023 @default.
- W2964130120 crossrefType "journal-article" @default.
- W2964130120 hasAuthorship W2964130120A5011999109 @default.
- W2964130120 hasAuthorship W2964130120A5061114394 @default.
- W2964130120 hasBestOaLocation W29641301202 @default.
- W2964130120 hasConcept C102519508 @default.
- W2964130120 hasConcept C105795698 @default.
- W2964130120 hasConcept C114614502 @default.
- W2964130120 hasConcept C121332964 @default.
- W2964130120 hasConcept C134306372 @default.
- W2964130120 hasConcept C151201525 @default.
- W2964130120 hasConcept C158693339 @default.
- W2964130120 hasConcept C185429906 @default.
- W2964130120 hasConcept C28826006 @default.
- W2964130120 hasConcept C33923547 @default.
- W2964130120 hasConcept C62520636 @default.
- W2964130120 hasConcept C64812099 @default.
- W2964130120 hasConcept C77553402 @default.
- W2964130120 hasConcept C81793267 @default.
- W2964130120 hasConceptScore W2964130120C102519508 @default.
- W2964130120 hasConceptScore W2964130120C105795698 @default.
- W2964130120 hasConceptScore W2964130120C114614502 @default.
- W2964130120 hasConceptScore W2964130120C121332964 @default.
- W2964130120 hasConceptScore W2964130120C134306372 @default.
- W2964130120 hasConceptScore W2964130120C151201525 @default.
- W2964130120 hasConceptScore W2964130120C158693339 @default.
- W2964130120 hasConceptScore W2964130120C185429906 @default.
- W2964130120 hasConceptScore W2964130120C28826006 @default.
- W2964130120 hasConceptScore W2964130120C33923547 @default.
- W2964130120 hasConceptScore W2964130120C62520636 @default.