Matches in SemOpenAlex for { <https://semopenalex.org/work/W2964135541> ?p ?o ?g. }
Showing items 1 to 75 of
75
with 100 items per page.
- W2964135541 endingPage "300" @default.
- W2964135541 startingPage "287" @default.
- W2964135541 abstract "The Kučera–Gács theorem is a landmark result in algorithmic randomness asserting that every real is computable from a Martin-Löf random real. If the computation of the first n bits of a sequence requires n + h ( n ) bits of the random oracle, then h is the redundancy of the computation. Kučera implicitly achieved redundancy n log n while Gács used a more elaborate coding procedure which achieves redundancy n log n . A similar bound is implicit in the later proof by Merkle and Mihailović. In this paper we obtain optimal strict lower bounds on the redundancy in computations from Martin-Löf random oracles. We show that any nondecreasing computable function g such that ∑ n 2 − g ( n ) = ∞ is not a general upper bound on the redundancy in computations from Martin-Löf random oracles. In fact, there exists a real X such that the redundancy g of any computation of X from a Martin-Löf random oracle satisfies ∑ n 2 − g ( n ) < ∞ . Moreover, the class of such reals is comeager and includes a Δ 2 0 real as well as all weakly 2-generic reals. On the other hand, it has been recently shown that any real is computable from a Martin-Löf random oracle with redundancy g , provided that g is a computable nondecreasing function such that ∑ n 2 − g ( n ) < ∞ . Hence our lower bound is optimal, and excludes many slow growing functions such as log n from bounding the redundancy in computations from random oracles for a large class of reals. Our results are obtained as an application of a theory of effective betting strategies with restricted wagers which we develop." @default.
- W2964135541 created "2019-07-30" @default.
- W2964135541 creator A5017252483 @default.
- W2964135541 creator A5039488006 @default.
- W2964135541 creator A5071938003 @default.
- W2964135541 date "2016-12-01" @default.
- W2964135541 modified "2023-09-29" @default.
- W2964135541 title "Lower bounds on the redundancy in computations from random oracles via betting strategies with restricted wagers" @default.
- W2964135541 cites W1515220588 @default.
- W2964135541 cites W1862873396 @default.
- W2964135541 cites W1907425153 @default.
- W2964135541 cites W2006580730 @default.
- W2964135541 cites W2008797389 @default.
- W2964135541 cites W2034673847 @default.
- W2964135541 cites W2039400907 @default.
- W2964135541 cites W2067580807 @default.
- W2964135541 cites W2093995583 @default.
- W2964135541 cites W2104394421 @default.
- W2964135541 cites W2170481824 @default.
- W2964135541 cites W2484159992 @default.
- W2964135541 cites W2963577808 @default.
- W2964135541 cites W2964310650 @default.
- W2964135541 cites W4230960895 @default.
- W2964135541 doi "https://doi.org/10.1016/j.ic.2016.09.010" @default.
- W2964135541 hasPublicationYear "2016" @default.
- W2964135541 type Work @default.
- W2964135541 sameAs 2964135541 @default.
- W2964135541 citedByCount "6" @default.
- W2964135541 countsByYear W29641355412016 @default.
- W2964135541 countsByYear W29641355412018 @default.
- W2964135541 countsByYear W29641355412019 @default.
- W2964135541 countsByYear W29641355412020 @default.
- W2964135541 countsByYear W29641355412023 @default.
- W2964135541 crossrefType "journal-article" @default.
- W2964135541 hasAuthorship W2964135541A5017252483 @default.
- W2964135541 hasAuthorship W2964135541A5039488006 @default.
- W2964135541 hasAuthorship W2964135541A5071938003 @default.
- W2964135541 hasBestOaLocation W29641355411 @default.
- W2964135541 hasConcept C111919701 @default.
- W2964135541 hasConcept C11413529 @default.
- W2964135541 hasConcept C152124472 @default.
- W2964135541 hasConcept C33923547 @default.
- W2964135541 hasConcept C41008148 @default.
- W2964135541 hasConcept C45374587 @default.
- W2964135541 hasConcept C80444323 @default.
- W2964135541 hasConceptScore W2964135541C111919701 @default.
- W2964135541 hasConceptScore W2964135541C11413529 @default.
- W2964135541 hasConceptScore W2964135541C152124472 @default.
- W2964135541 hasConceptScore W2964135541C33923547 @default.
- W2964135541 hasConceptScore W2964135541C41008148 @default.
- W2964135541 hasConceptScore W2964135541C45374587 @default.
- W2964135541 hasConceptScore W2964135541C80444323 @default.
- W2964135541 hasFunder F4320321133 @default.
- W2964135541 hasLocation W29641355411 @default.
- W2964135541 hasLocation W29641355412 @default.
- W2964135541 hasLocation W29641355413 @default.
- W2964135541 hasOpenAccess W2964135541 @default.
- W2964135541 hasPrimaryLocation W29641355411 @default.
- W2964135541 hasRelatedWork W1534842550 @default.
- W2964135541 hasRelatedWork W1538624230 @default.
- W2964135541 hasRelatedWork W1572523360 @default.
- W2964135541 hasRelatedWork W1587906417 @default.
- W2964135541 hasRelatedWork W203405304 @default.
- W2964135541 hasRelatedWork W2347941600 @default.
- W2964135541 hasRelatedWork W2352648941 @default.
- W2964135541 hasRelatedWork W2354062721 @default.
- W2964135541 hasRelatedWork W2375463041 @default.
- W2964135541 hasRelatedWork W2978499776 @default.
- W2964135541 hasVolume "251" @default.
- W2964135541 isParatext "false" @default.
- W2964135541 isRetracted "false" @default.
- W2964135541 magId "2964135541" @default.
- W2964135541 workType "article" @default.