Matches in SemOpenAlex for { <https://semopenalex.org/work/W2964136462> ?p ?o ?g. }
- W2964136462 endingPage "1" @default.
- W2964136462 startingPage "1" @default.
- W2964136462 abstract "Genome-Wide Association Studies (GWAS) are used to identify statistically significant genetic variants in case-control studies. The main objective is to find single nucleotide polymorphisms (SNPs) that influence a particular phenotype (i.e., disease trait). GWAS typically use a p-value threshold of <inline-formula><tex-math notation=LaTeX>$5*10^{-8}$</tex-math></inline-formula> to identify highly ranked SNPs. While this approach has proven useful for detecting disease-susceptible SNPs, evidence has shown that many of these are, in fact, false positives. Consequently, there is some ambiguity about the most suitable threshold for claiming genome-wide significance. Many believe that using lower p-values will allow us to investigate the joint epistatic interactions between SNPs and provide better insights into phenotype expression. One example that uses this approach is multifactor dimensionality reduction (MDR), which identifies combinations of SNPs that interact to influence a particular outcome. However, computational complexity is increased exponentially as a function of higher-order combinations making approaches like MDR difficult to implement. Even so, understanding epistatic interactions in complex diseases is a fundamental component for robust genotype-phenotype mapping. In this paper, we propose a novel framework that combines GWAS quality control and logistic regression with deep learning stacked autoencoders to abstract higher-order SNP interactions from large, complex genotyped data for case-control classification tasks in GWAS analysis. We focus on the challenging problem of classifying preterm births which has a strong genetic component with unexplained heritability reportedly between 20-40 percent. A GWAS data set, obtained from dbGap is utilised, which contains predominantly urban low-income African-American women who had normal and preterm deliveries. Epistatic interactions from original SNP sequences were extracted through a deep learning stacked autoencoder model and used to fine-tune a classifier for discriminating between term and preterm births observations. All models are evaluated using standard binary classifier performance metrics. The findings show that important information pertaining to SNPs and epistasis can be extracted from 4,666 raw SNPs generated using logistic regression (p-value = <inline-formula><tex-math notation=LaTeX>$5*10^{-3}$</tex-math></inline-formula> ) and used to fit a highly accurate classifier model. The following results (Sen = 0.9562, Spec = 0.8780, Gini = 0.9490, Logloss = 0.5901, AUC = 0.9745, and MSE = 0.2010) were obtained using 50 hidden nodes and (Sen = 0.9289, Spec = 0.9591, Gini = 0.9651, Logloss = 0.3080, AUC = 0.9825, and MSE = 0.0942) using 500 hidden nodes. The results were compared with a Support Vector Machine (SVM), a Random Forest (RF), and a Fishers Linear Discriminant Analysis classifier, which all failed to improve on the deep learning approach." @default.
- W2964136462 created "2019-07-30" @default.
- W2964136462 creator A5010155676 @default.
- W2964136462 creator A5015808667 @default.
- W2964136462 creator A5019193550 @default.
- W2964136462 creator A5047077263 @default.
- W2964136462 creator A5073537097 @default.
- W2964136462 creator A5085285422 @default.
- W2964136462 date "2018-01-01" @default.
- W2964136462 modified "2023-10-16" @default.
- W2964136462 title "Utilising Deep Learning and Genome Wide Association Studies for Epistatic-Driven Preterm Birth Classification in African-American Women" @default.
- W2964136462 cites W1498436455 @default.
- W2964136462 cites W1572063013 @default.
- W2964136462 cites W1822695366 @default.
- W2964136462 cites W1862091519 @default.
- W2964136462 cites W1965954202 @default.
- W2964136462 cites W1971299565 @default.
- W2964136462 cites W1975755498 @default.
- W2964136462 cites W1981927147 @default.
- W2964136462 cites W1992370145 @default.
- W2964136462 cites W1996032281 @default.
- W2964136462 cites W2008719690 @default.
- W2964136462 cites W2012150214 @default.
- W2964136462 cites W2016466384 @default.
- W2964136462 cites W2028260332 @default.
- W2964136462 cites W2042889949 @default.
- W2964136462 cites W2070082005 @default.
- W2964136462 cites W2086099578 @default.
- W2964136462 cites W2091596103 @default.
- W2964136462 cites W2101350555 @default.
- W2964136462 cites W2104579579 @default.
- W2964136462 cites W2117446594 @default.
- W2964136462 cites W2128207034 @default.
- W2964136462 cites W2136186575 @default.
- W2964136462 cites W2137514719 @default.
- W2964136462 cites W2157752701 @default.
- W2964136462 cites W2161633633 @default.
- W2964136462 cites W2166266395 @default.
- W2964136462 cites W2198606573 @default.
- W2964136462 cites W2335199723 @default.
- W2964136462 cites W2503135644 @default.
- W2964136462 cites W2504700942 @default.
- W2964136462 cites W2514534732 @default.
- W2964136462 cites W2593086047 @default.
- W2964136462 cites W2743138268 @default.
- W2964136462 cites W2919115771 @default.
- W2964136462 cites W4236925435 @default.
- W2964136462 cites W4252029738 @default.
- W2964136462 doi "https://doi.org/10.1109/tcbb.2018.2868667" @default.
- W2964136462 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30183645" @default.
- W2964136462 hasPublicationYear "2018" @default.
- W2964136462 type Work @default.
- W2964136462 sameAs 2964136462 @default.
- W2964136462 citedByCount "19" @default.
- W2964136462 countsByYear W29641364622019 @default.
- W2964136462 countsByYear W29641364622020 @default.
- W2964136462 countsByYear W29641364622021 @default.
- W2964136462 countsByYear W29641364622022 @default.
- W2964136462 countsByYear W29641364622023 @default.
- W2964136462 crossrefType "journal-article" @default.
- W2964136462 hasAuthorship W2964136462A5010155676 @default.
- W2964136462 hasAuthorship W2964136462A5015808667 @default.
- W2964136462 hasAuthorship W2964136462A5019193550 @default.
- W2964136462 hasAuthorship W2964136462A5047077263 @default.
- W2964136462 hasAuthorship W2964136462A5073537097 @default.
- W2964136462 hasAuthorship W2964136462A5085285422 @default.
- W2964136462 hasBestOaLocation W29641364622 @default.
- W2964136462 hasConcept C104317684 @default.
- W2964136462 hasConcept C106208931 @default.
- W2964136462 hasConcept C135763542 @default.
- W2964136462 hasConcept C139275648 @default.
- W2964136462 hasConcept C153209595 @default.
- W2964136462 hasConcept C168393362 @default.
- W2964136462 hasConcept C186413461 @default.
- W2964136462 hasConcept C41008148 @default.
- W2964136462 hasConcept C54355233 @default.
- W2964136462 hasConcept C61727976 @default.
- W2964136462 hasConcept C70721500 @default.
- W2964136462 hasConcept C86803240 @default.
- W2964136462 hasConceptScore W2964136462C104317684 @default.
- W2964136462 hasConceptScore W2964136462C106208931 @default.
- W2964136462 hasConceptScore W2964136462C135763542 @default.
- W2964136462 hasConceptScore W2964136462C139275648 @default.
- W2964136462 hasConceptScore W2964136462C153209595 @default.
- W2964136462 hasConceptScore W2964136462C168393362 @default.
- W2964136462 hasConceptScore W2964136462C186413461 @default.
- W2964136462 hasConceptScore W2964136462C41008148 @default.
- W2964136462 hasConceptScore W2964136462C54355233 @default.
- W2964136462 hasConceptScore W2964136462C61727976 @default.
- W2964136462 hasConceptScore W2964136462C70721500 @default.
- W2964136462 hasConceptScore W2964136462C86803240 @default.
- W2964136462 hasLocation W29641364621 @default.
- W2964136462 hasLocation W29641364622 @default.
- W2964136462 hasLocation W29641364623 @default.
- W2964136462 hasOpenAccess W2964136462 @default.
- W2964136462 hasPrimaryLocation W29641364621 @default.
- W2964136462 hasRelatedWork W2028523669 @default.
- W2964136462 hasRelatedWork W2038689886 @default.