Matches in SemOpenAlex for { <https://semopenalex.org/work/W2964137382> ?p ?o ?g. }
- W2964137382 abstract "Logistic linear mixed models are widely used in experimental designs and genetic analyses of binary traits. Motivated by modern applications, we consider the case of many groups of random effects, where each group corresponds to a variance component. When the number of variance components is large, fitting a logistic linear mixed model is challenging. Thus, we develop two efficient and stable minorization-maximization (MM) algorithms for estimating variance components based on a Laplace approximation of the logistic model. One of these leads to a simple iterative soft-thresholding algorithm for variance component selection using the maximum penalized approximated likelihood. We demonstrate the variance component estimation and selection performance of our algorithms by means of simulation studies and an analysis of real data." @default.
- W2964137382 created "2019-07-30" @default.
- W2964137382 creator A5041468731 @default.
- W2964137382 creator A5059203764 @default.
- W2964137382 creator A5060348530 @default.
- W2964137382 creator A5088575740 @default.
- W2964137382 date "2019-01-01" @default.
- W2964137382 modified "2023-10-03" @default.
- W2964137382 title "MM ALGORITHMS FOR VARIANCE COMPONENT ESTIMATION AND SELECTION IN LOGISTIC LINEAR MIXED MODEL" @default.
- W2964137382 cites W1979228560 @default.
- W2964137382 cites W1980092349 @default.
- W2964137382 cites W2006336297 @default.
- W2964137382 cites W2032413716 @default.
- W2964137382 cites W2063655230 @default.
- W2964137382 cites W2075651107 @default.
- W2964137382 cites W2082907106 @default.
- W2964137382 cites W2088262142 @default.
- W2964137382 cites W2151179525 @default.
- W2964137382 cites W2163953557 @default.
- W2964137382 doi "https://doi.org/10.5705/ss.202017.0220" @default.
- W2964137382 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7286582" @default.
- W2964137382 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32523320" @default.
- W2964137382 hasPublicationYear "2019" @default.
- W2964137382 type Work @default.
- W2964137382 sameAs 2964137382 @default.
- W2964137382 citedByCount "1" @default.
- W2964137382 crossrefType "journal-article" @default.
- W2964137382 hasAuthorship W2964137382A5041468731 @default.
- W2964137382 hasAuthorship W2964137382A5059203764 @default.
- W2964137382 hasAuthorship W2964137382A5060348530 @default.
- W2964137382 hasAuthorship W2964137382A5088575740 @default.
- W2964137382 hasBestOaLocation W29641373822 @default.
- W2964137382 hasConcept C105795698 @default.
- W2964137382 hasConcept C11413529 @default.
- W2964137382 hasConcept C121332964 @default.
- W2964137382 hasConcept C121955636 @default.
- W2964137382 hasConcept C126255220 @default.
- W2964137382 hasConcept C144133560 @default.
- W2964137382 hasConcept C151956035 @default.
- W2964137382 hasConcept C153720581 @default.
- W2964137382 hasConcept C154945302 @default.
- W2964137382 hasConcept C163175372 @default.
- W2964137382 hasConcept C167928553 @default.
- W2964137382 hasConcept C168167062 @default.
- W2964137382 hasConcept C182081679 @default.
- W2964137382 hasConcept C196083921 @default.
- W2964137382 hasConcept C2779190172 @default.
- W2964137382 hasConcept C3018076075 @default.
- W2964137382 hasConcept C33923547 @default.
- W2964137382 hasConcept C41008148 @default.
- W2964137382 hasConcept C48372109 @default.
- W2964137382 hasConcept C49781872 @default.
- W2964137382 hasConcept C61420037 @default.
- W2964137382 hasConcept C81917197 @default.
- W2964137382 hasConcept C94375191 @default.
- W2964137382 hasConcept C97355855 @default.
- W2964137382 hasConceptScore W2964137382C105795698 @default.
- W2964137382 hasConceptScore W2964137382C11413529 @default.
- W2964137382 hasConceptScore W2964137382C121332964 @default.
- W2964137382 hasConceptScore W2964137382C121955636 @default.
- W2964137382 hasConceptScore W2964137382C126255220 @default.
- W2964137382 hasConceptScore W2964137382C144133560 @default.
- W2964137382 hasConceptScore W2964137382C151956035 @default.
- W2964137382 hasConceptScore W2964137382C153720581 @default.
- W2964137382 hasConceptScore W2964137382C154945302 @default.
- W2964137382 hasConceptScore W2964137382C163175372 @default.
- W2964137382 hasConceptScore W2964137382C167928553 @default.
- W2964137382 hasConceptScore W2964137382C168167062 @default.
- W2964137382 hasConceptScore W2964137382C182081679 @default.
- W2964137382 hasConceptScore W2964137382C196083921 @default.
- W2964137382 hasConceptScore W2964137382C2779190172 @default.
- W2964137382 hasConceptScore W2964137382C3018076075 @default.
- W2964137382 hasConceptScore W2964137382C33923547 @default.
- W2964137382 hasConceptScore W2964137382C41008148 @default.
- W2964137382 hasConceptScore W2964137382C48372109 @default.
- W2964137382 hasConceptScore W2964137382C49781872 @default.
- W2964137382 hasConceptScore W2964137382C61420037 @default.
- W2964137382 hasConceptScore W2964137382C81917197 @default.
- W2964137382 hasConceptScore W2964137382C94375191 @default.
- W2964137382 hasConceptScore W2964137382C97355855 @default.
- W2964137382 hasLocation W29641373821 @default.
- W2964137382 hasLocation W29641373822 @default.
- W2964137382 hasLocation W29641373823 @default.
- W2964137382 hasLocation W29641373824 @default.
- W2964137382 hasLocation W29641373825 @default.
- W2964137382 hasOpenAccess W2964137382 @default.
- W2964137382 hasPrimaryLocation W29641373821 @default.
- W2964137382 hasRelatedWork W1992914993 @default.
- W2964137382 hasRelatedWork W1993849755 @default.
- W2964137382 hasRelatedWork W1997861963 @default.
- W2964137382 hasRelatedWork W2053995684 @default.
- W2964137382 hasRelatedWork W2101777861 @default.
- W2964137382 hasRelatedWork W2265610471 @default.
- W2964137382 hasRelatedWork W2501722337 @default.
- W2964137382 hasRelatedWork W2520232176 @default.
- W2964137382 hasRelatedWork W2770766252 @default.
- W2964137382 hasRelatedWork W402624368 @default.
- W2964137382 isParatext "false" @default.
- W2964137382 isRetracted "false" @default.
- W2964137382 magId "2964137382" @default.