Matches in SemOpenAlex for { <https://semopenalex.org/work/W2964144157> ?p ?o ?g. }
- W2964144157 endingPage "58105" @default.
- W2964144157 startingPage "58096" @default.
- W2964144157 abstract "Nonsmooth nonnegative matrix factorization (nsNMF) is capable of producing more localized, less overlapped feature representations than other variants of NMF while keeping satisfactory fit to data. However, nsNMF as well as other existing NMF methods are incompetent to learn hierarchical features of complex data due to its shallow structure. To fill this gap, we propose a deep nsNMF method coined by the fact that it possesses a deeper architecture compared with standard nsNMF. The deep nsNMF not only gives part-based features due to the nonnegativity constraints but also creates higher level, more abstract features by combing lower level ones. The in-depth description of how deep architecture can help to efficiently discover abstract features in dnsNMF is presented, suggesting that the proposed model inherits the major advantages from both deep learning and NMF. Extensive experiments demonstrate the standout performance of the proposed method in clustering analysis." @default.
- W2964144157 created "2019-07-30" @default.
- W2964144157 creator A5018676117 @default.
- W2964144157 creator A5043262479 @default.
- W2964144157 creator A5061696482 @default.
- W2964144157 creator A5090101808 @default.
- W2964144157 date "2018-01-01" @default.
- W2964144157 modified "2023-10-06" @default.
- W2964144157 title "Learning the Hierarchical Parts of Objects by Deep Non-Smooth Nonnegative Matrix Factorization" @default.
- W2964144157 cites W1497317973 @default.
- W2964144157 cites W1594523130 @default.
- W2964144157 cites W1878057855 @default.
- W2964144157 cites W1902027874 @default.
- W2964144157 cites W1991380130 @default.
- W2964144157 cites W2013029404 @default.
- W2964144157 cites W2015583498 @default.
- W2964144157 cites W2024815463 @default.
- W2964144157 cites W2059745395 @default.
- W2964144157 cites W2064690543 @default.
- W2964144157 cites W2079196839 @default.
- W2964144157 cites W2094087561 @default.
- W2964144157 cites W2100556411 @default.
- W2964144157 cites W2104298926 @default.
- W2964144157 cites W2104819583 @default.
- W2964144157 cites W2106115875 @default.
- W2964144157 cites W2108433027 @default.
- W2964144157 cites W2113359929 @default.
- W2964144157 cites W2116216716 @default.
- W2964144157 cites W2129354191 @default.
- W2964144157 cites W2132692097 @default.
- W2964144157 cites W2136171036 @default.
- W2964144157 cites W2136787567 @default.
- W2964144157 cites W2142621404 @default.
- W2964144157 cites W2146739705 @default.
- W2964144157 cites W2146913572 @default.
- W2964144157 cites W2147368249 @default.
- W2964144157 cites W2153335355 @default.
- W2964144157 cites W2155151262 @default.
- W2964144157 cites W2163927692 @default.
- W2964144157 cites W2167686991 @default.
- W2964144157 cites W2169658215 @default.
- W2964144157 cites W2294040673 @default.
- W2964144157 cites W2555164456 @default.
- W2964144157 doi "https://doi.org/10.1109/access.2018.2873385" @default.
- W2964144157 hasPublicationYear "2018" @default.
- W2964144157 type Work @default.
- W2964144157 sameAs 2964144157 @default.
- W2964144157 citedByCount "25" @default.
- W2964144157 countsByYear W29641441572019 @default.
- W2964144157 countsByYear W29641441572020 @default.
- W2964144157 countsByYear W29641441572021 @default.
- W2964144157 countsByYear W29641441572022 @default.
- W2964144157 countsByYear W29641441572023 @default.
- W2964144157 crossrefType "journal-article" @default.
- W2964144157 hasAuthorship W2964144157A5018676117 @default.
- W2964144157 hasAuthorship W2964144157A5043262479 @default.
- W2964144157 hasAuthorship W2964144157A5061696482 @default.
- W2964144157 hasAuthorship W2964144157A5090101808 @default.
- W2964144157 hasBestOaLocation W29641441571 @default.
- W2964144157 hasConcept C106487976 @default.
- W2964144157 hasConcept C108583219 @default.
- W2964144157 hasConcept C11413529 @default.
- W2964144157 hasConcept C121332964 @default.
- W2964144157 hasConcept C123657996 @default.
- W2964144157 hasConcept C138885662 @default.
- W2964144157 hasConcept C142362112 @default.
- W2964144157 hasConcept C152671427 @default.
- W2964144157 hasConcept C153180895 @default.
- W2964144157 hasConcept C153349607 @default.
- W2964144157 hasConcept C154945302 @default.
- W2964144157 hasConcept C158693339 @default.
- W2964144157 hasConcept C159985019 @default.
- W2964144157 hasConcept C187834632 @default.
- W2964144157 hasConcept C192562407 @default.
- W2964144157 hasConcept C205649164 @default.
- W2964144157 hasConcept C2776401178 @default.
- W2964144157 hasConcept C2778952367 @default.
- W2964144157 hasConcept C41008148 @default.
- W2964144157 hasConcept C41895202 @default.
- W2964144157 hasConcept C42355184 @default.
- W2964144157 hasConcept C58640448 @default.
- W2964144157 hasConcept C62520636 @default.
- W2964144157 hasConcept C73555534 @default.
- W2964144157 hasConcept C92835128 @default.
- W2964144157 hasConceptScore W2964144157C106487976 @default.
- W2964144157 hasConceptScore W2964144157C108583219 @default.
- W2964144157 hasConceptScore W2964144157C11413529 @default.
- W2964144157 hasConceptScore W2964144157C121332964 @default.
- W2964144157 hasConceptScore W2964144157C123657996 @default.
- W2964144157 hasConceptScore W2964144157C138885662 @default.
- W2964144157 hasConceptScore W2964144157C142362112 @default.
- W2964144157 hasConceptScore W2964144157C152671427 @default.
- W2964144157 hasConceptScore W2964144157C153180895 @default.
- W2964144157 hasConceptScore W2964144157C153349607 @default.
- W2964144157 hasConceptScore W2964144157C154945302 @default.
- W2964144157 hasConceptScore W2964144157C158693339 @default.
- W2964144157 hasConceptScore W2964144157C159985019 @default.
- W2964144157 hasConceptScore W2964144157C187834632 @default.