Matches in SemOpenAlex for { <https://semopenalex.org/work/W2964145209> ?p ?o ?g. }
- W2964145209 endingPage "63" @default.
- W2964145209 startingPage "52" @default.
- W2964145209 abstract "Inferring the structure and dynamics of network models is critical to understanding the functionality and control of complex systems, such as metabolic and regulatory biological networks. The increasing quality and quantity of experimental data enable statistical approaches based on information theory for model selection and goodness-of-fit metrics. We propose an alternative data-driven method to infer networked nonlinear dynamical systems by using sparsity-promoting optimization to select a subset of nonlinear interactions representing dynamics on a network. In contrast to standard model selection methods-based upon information content for a finite number of heuristic models (order 10 or less), our model selection procedure discovers a parsimonious model from a combinatorially large set of models, without an exhaustive search. Our particular innovation is appropriate for many biological networks, where the governing dynamical systems have rational function nonlinearities with cross terms, thus requiring an implicit formulation and the equations to be identified in the null-space of a library of mixed nonlinearities, including the state and derivative terms. This method, implicit-SINDy, succeeds in inferring three canonical biological models: 1) Michaelis-Menten enzyme kinetics; 2) the regulatory network for competence in bacteria; and 3) the metabolic network for yeast glycolysis." @default.
- W2964145209 created "2019-07-30" @default.
- W2964145209 creator A5009969698 @default.
- W2964145209 creator A5062653961 @default.
- W2964145209 creator A5075972178 @default.
- W2964145209 creator A5083450863 @default.
- W2964145209 date "2016-06-01" @default.
- W2964145209 modified "2023-10-11" @default.
- W2964145209 title "Inferring Biological Networks by Sparse Identification of Nonlinear Dynamics" @default.
- W2964145209 cites W1965555277 @default.
- W2964145209 cites W1967668980 @default.
- W2964145209 cites W1970599841 @default.
- W2964145209 cites W1970991353 @default.
- W2964145209 cites W1978060721 @default.
- W2964145209 cites W1979769287 @default.
- W2964145209 cites W1988501212 @default.
- W2964145209 cites W1991542861 @default.
- W2964145209 cites W1992182416 @default.
- W2964145209 cites W1996629685 @default.
- W2964145209 cites W2004164967 @default.
- W2964145209 cites W2009578404 @default.
- W2964145209 cites W2014298366 @default.
- W2964145209 cites W2039551908 @default.
- W2964145209 cites W2047279254 @default.
- W2964145209 cites W2048951385 @default.
- W2964145209 cites W2058794142 @default.
- W2964145209 cites W2060458267 @default.
- W2964145209 cites W2061425021 @default.
- W2964145209 cites W2062560607 @default.
- W2964145209 cites W2063731290 @default.
- W2964145209 cites W2065576510 @default.
- W2964145209 cites W2071413187 @default.
- W2964145209 cites W2075296589 @default.
- W2964145209 cites W2081129357 @default.
- W2964145209 cites W2086901931 @default.
- W2964145209 cites W2091170789 @default.
- W2964145209 cites W2092766760 @default.
- W2964145209 cites W2093828424 @default.
- W2964145209 cites W2098398123 @default.
- W2964145209 cites W2101258119 @default.
- W2964145209 cites W2104266187 @default.
- W2964145209 cites W2109384743 @default.
- W2964145209 cites W2111413028 @default.
- W2964145209 cites W2114176419 @default.
- W2964145209 cites W2123986939 @default.
- W2964145209 cites W2124419982 @default.
- W2964145209 cites W2125258701 @default.
- W2964145209 cites W2129812935 @default.
- W2964145209 cites W2136482549 @default.
- W2964145209 cites W2137258853 @default.
- W2964145209 cites W2139882086 @default.
- W2964145209 cites W2141920860 @default.
- W2964145209 cites W2142635246 @default.
- W2964145209 cites W2143282831 @default.
- W2964145209 cites W2144876629 @default.
- W2964145209 cites W2145645825 @default.
- W2964145209 cites W2149695944 @default.
- W2964145209 cites W2150847325 @default.
- W2964145209 cites W2157121418 @default.
- W2964145209 cites W2158196600 @default.
- W2964145209 cites W2163630217 @default.
- W2964145209 cites W2168175751 @default.
- W2964145209 cites W2239232218 @default.
- W2964145209 cites W2273647512 @default.
- W2964145209 cites W2345057418 @default.
- W2964145209 cites W2399357114 @default.
- W2964145209 cites W2487770199 @default.
- W2964145209 cites W2537425397 @default.
- W2964145209 cites W2921430350 @default.
- W2964145209 cites W2963780177 @default.
- W2964145209 cites W3099107306 @default.
- W2964145209 cites W3101784999 @default.
- W2964145209 cites W3104281729 @default.
- W2964145209 cites W4238160257 @default.
- W2964145209 cites W4245121739 @default.
- W2964145209 cites W4250955649 @default.
- W2964145209 doi "https://doi.org/10.1109/tmbmc.2016.2633265" @default.
- W2964145209 hasPublicationYear "2016" @default.
- W2964145209 type Work @default.
- W2964145209 sameAs 2964145209 @default.
- W2964145209 citedByCount "259" @default.
- W2964145209 countsByYear W29641452092017 @default.
- W2964145209 countsByYear W29641452092018 @default.
- W2964145209 countsByYear W29641452092019 @default.
- W2964145209 countsByYear W29641452092020 @default.
- W2964145209 countsByYear W29641452092021 @default.
- W2964145209 countsByYear W29641452092022 @default.
- W2964145209 countsByYear W29641452092023 @default.
- W2964145209 crossrefType "journal-article" @default.
- W2964145209 hasAuthorship W2964145209A5009969698 @default.
- W2964145209 hasAuthorship W2964145209A5062653961 @default.
- W2964145209 hasAuthorship W2964145209A5075972178 @default.
- W2964145209 hasAuthorship W2964145209A5083450863 @default.
- W2964145209 hasBestOaLocation W29641452092 @default.
- W2964145209 hasConcept C101810790 @default.
- W2964145209 hasConcept C105795698 @default.
- W2964145209 hasConcept C114614502 @default.
- W2964145209 hasConcept C117251300 @default.