Matches in SemOpenAlex for { <https://semopenalex.org/work/W2964156564> ?p ?o ?g. }
Showing items 1 to 83 of
83
with 100 items per page.
- W2964156564 endingPage "279" @default.
- W2964156564 startingPage "270" @default.
- W2964156564 abstract "Despite the fundamental nature of the inhomogeneous Poisson process in the theory and application of stochastic processes, and its attractive generalizations (e.g. Cox process), few tractable nonparametric modeling approaches of intensity functions exist, especially when observed points lie in a high-dimensional space. In this paper we develop a new, computationally tractable Reproducing Kernel Hilbert Space (RKHS) formulation for the inhomogeneous Poisson process. We model the square root of the intensity as an RKHS function. Whereas RKHS models used in supervised learning rely on the so-called representer theorem, the form of the inhomogeneous Poisson process likelihood means that the representer theorem does not apply. However, we prove that the representer theorem does hold in an appropriately transformed RKHS, guaranteeing that the optimization of the penalized likelihood can be cast as a tractable finite-dimensional problem. The resulting approach is simple to implement, and readily scales to high dimensions and large-scale datasets." @default.
- W2964156564 created "2019-07-30" @default.
- W2964156564 creator A5032005702 @default.
- W2964156564 creator A5040046354 @default.
- W2964156564 creator A5064373793 @default.
- W2964156564 date "2017-04-10" @default.
- W2964156564 modified "2023-09-26" @default.
- W2964156564 title "Poisson intensity estimation with reproducing kernels" @default.
- W2964156564 hasPublicationYear "2017" @default.
- W2964156564 type Work @default.
- W2964156564 sameAs 2964156564 @default.
- W2964156564 citedByCount "0" @default.
- W2964156564 crossrefType "proceedings-article" @default.
- W2964156564 hasAuthorship W2964156564A5032005702 @default.
- W2964156564 hasAuthorship W2964156564A5040046354 @default.
- W2964156564 hasAuthorship W2964156564A5064373793 @default.
- W2964156564 hasConcept C100906024 @default.
- W2964156564 hasConcept C102366305 @default.
- W2964156564 hasConcept C105795698 @default.
- W2964156564 hasConcept C118615104 @default.
- W2964156564 hasConcept C122280245 @default.
- W2964156564 hasConcept C12267149 @default.
- W2964156564 hasConcept C126255220 @default.
- W2964156564 hasConcept C134306372 @default.
- W2964156564 hasConcept C134517425 @default.
- W2964156564 hasConcept C154945302 @default.
- W2964156564 hasConcept C155051063 @default.
- W2964156564 hasConcept C166144826 @default.
- W2964156564 hasConcept C172623408 @default.
- W2964156564 hasConcept C28826006 @default.
- W2964156564 hasConcept C33923547 @default.
- W2964156564 hasConcept C41008148 @default.
- W2964156564 hasConcept C62799726 @default.
- W2964156564 hasConcept C74193536 @default.
- W2964156564 hasConcept C80884492 @default.
- W2964156564 hasConceptScore W2964156564C100906024 @default.
- W2964156564 hasConceptScore W2964156564C102366305 @default.
- W2964156564 hasConceptScore W2964156564C105795698 @default.
- W2964156564 hasConceptScore W2964156564C118615104 @default.
- W2964156564 hasConceptScore W2964156564C122280245 @default.
- W2964156564 hasConceptScore W2964156564C12267149 @default.
- W2964156564 hasConceptScore W2964156564C126255220 @default.
- W2964156564 hasConceptScore W2964156564C134306372 @default.
- W2964156564 hasConceptScore W2964156564C134517425 @default.
- W2964156564 hasConceptScore W2964156564C154945302 @default.
- W2964156564 hasConceptScore W2964156564C155051063 @default.
- W2964156564 hasConceptScore W2964156564C166144826 @default.
- W2964156564 hasConceptScore W2964156564C172623408 @default.
- W2964156564 hasConceptScore W2964156564C28826006 @default.
- W2964156564 hasConceptScore W2964156564C33923547 @default.
- W2964156564 hasConceptScore W2964156564C41008148 @default.
- W2964156564 hasConceptScore W2964156564C62799726 @default.
- W2964156564 hasConceptScore W2964156564C74193536 @default.
- W2964156564 hasConceptScore W2964156564C80884492 @default.
- W2964156564 hasLocation W29641565641 @default.
- W2964156564 hasOpenAccess W2964156564 @default.
- W2964156564 hasPrimaryLocation W29641565641 @default.
- W2964156564 hasRelatedWork W2119464254 @default.
- W2964156564 hasRelatedWork W232898484 @default.
- W2964156564 hasRelatedWork W2405138189 @default.
- W2964156564 hasRelatedWork W2545393543 @default.
- W2964156564 hasRelatedWork W2762904187 @default.
- W2964156564 hasRelatedWork W2770027680 @default.
- W2964156564 hasRelatedWork W2882978603 @default.
- W2964156564 hasRelatedWork W2912386695 @default.
- W2964156564 hasRelatedWork W2933271511 @default.
- W2964156564 hasRelatedWork W2945270266 @default.
- W2964156564 hasRelatedWork W2949326632 @default.
- W2964156564 hasRelatedWork W2953076109 @default.
- W2964156564 hasRelatedWork W2964055106 @default.
- W2964156564 hasRelatedWork W3083291604 @default.
- W2964156564 hasRelatedWork W3100197521 @default.
- W2964156564 hasRelatedWork W3126766124 @default.
- W2964156564 hasRelatedWork W3137447695 @default.
- W2964156564 hasRelatedWork W3161792218 @default.
- W2964156564 hasRelatedWork W3193288832 @default.
- W2964156564 hasRelatedWork W3206763364 @default.
- W2964156564 isParatext "false" @default.
- W2964156564 isRetracted "false" @default.
- W2964156564 magId "2964156564" @default.
- W2964156564 workType "article" @default.