Matches in SemOpenAlex for { <https://semopenalex.org/work/W2964159112> ?p ?o ?g. }
Showing items 1 to 73 of
73
with 100 items per page.
- W2964159112 endingPage "1187" @default.
- W2964159112 startingPage "1174" @default.
- W2964159112 abstract "We analyze the inverse problem of identifying the diffusivity coefficient of a scalar elliptic equation as a function of the resolvent operator. We prove that, within the class of measurable coefficients, bounded above and below by positive constants, the resolvent determines the diffusivity in an unique manner. Furthermore, we prove that the inverse mapping from resolvent to the coefficient is Lipschitz in suitable topologies. This result plays a key role when applying greedy algorithms to the approximation of parameter-dependent elliptic problems in an uniform and robust manner, independent of the given source terms. In one space dimension, the results can be improved using the explicit expression of solutions, which allows us to link distances between one resolvent and a linear combination of finitely many others and the corresponding distances on coefficients. These results are also extended to multi-dimensional elliptic equations with variable density coefficients. We also point out some possible extensions and open problems. Nous examinons le problème inverse de l'identification du coefficient de diffusion comme fonction de la résolvante pour des équations elliptiques scalaires. Nous établissons, pour des topologies appropriées, un résultat de stabilité Lipschitz pour une classe de coefficients de diffusion mesurables, minorés et majorés par des constantes positives fixées a priori. Ce résultat intervient de manière essentielle dans le développement d'algorithmes greedy pour l'approximation d'une famille paramétrée de problèmes elliptiques de manière robuste et uniforme par rapport au terme source. Nous traitons séparément le cas de la dimension un, pour lequel nous disposons de formules explicites de représentation des solutions permettant de comparer la distance entre une résolvante et une combinaison linéaire d'un nombre fini d'autres et des coefficients correspondants, et un développement complet de l'approche greedy. Nous étendons ces résultats au problème de l'identification de la densité à partir de l'opérateur résolvant correspondant. Nous signalons aussi quelques problèmes ouverts, en particulier dans le cas multi-dimensionnel." @default.
- W2964159112 created "2019-07-30" @default.
- W2964159112 creator A5023821627 @default.
- W2964159112 creator A5088702266 @default.
- W2964159112 date "2016-12-01" @default.
- W2964159112 modified "2023-10-06" @default.
- W2964159112 title "Lipschitz dependence of the coefficients on the resolvent and greedy approximation for scalar elliptic problems" @default.
- W2964159112 cites W1510783914 @default.
- W2964159112 cites W1883358017 @default.
- W2964159112 cites W2011121645 @default.
- W2964159112 cites W2039055345 @default.
- W2964159112 cites W2122080931 @default.
- W2964159112 cites W2234752102 @default.
- W2964159112 cites W2962700159 @default.
- W2964159112 cites W2963798430 @default.
- W2964159112 cites W2622077046 @default.
- W2964159112 doi "https://doi.org/10.1016/j.crma.2016.10.017" @default.
- W2964159112 hasPublicationYear "2016" @default.
- W2964159112 type Work @default.
- W2964159112 sameAs 2964159112 @default.
- W2964159112 citedByCount "2" @default.
- W2964159112 countsByYear W29641591122018 @default.
- W2964159112 countsByYear W29641591122023 @default.
- W2964159112 crossrefType "journal-article" @default.
- W2964159112 hasAuthorship W2964159112A5023821627 @default.
- W2964159112 hasAuthorship W2964159112A5088702266 @default.
- W2964159112 hasBestOaLocation W29641591121 @default.
- W2964159112 hasConcept C134306372 @default.
- W2964159112 hasConcept C196267783 @default.
- W2964159112 hasConcept C207467116 @default.
- W2964159112 hasConcept C22324862 @default.
- W2964159112 hasConcept C2524010 @default.
- W2964159112 hasConcept C33923547 @default.
- W2964159112 hasConcept C57691317 @default.
- W2964159112 hasConceptScore W2964159112C134306372 @default.
- W2964159112 hasConceptScore W2964159112C196267783 @default.
- W2964159112 hasConceptScore W2964159112C207467116 @default.
- W2964159112 hasConceptScore W2964159112C22324862 @default.
- W2964159112 hasConceptScore W2964159112C2524010 @default.
- W2964159112 hasConceptScore W2964159112C33923547 @default.
- W2964159112 hasConceptScore W2964159112C57691317 @default.
- W2964159112 hasFunder F4320320883 @default.
- W2964159112 hasFunder F4320321837 @default.
- W2964159112 hasFunder F4320334678 @default.
- W2964159112 hasFunder F4320338279 @default.
- W2964159112 hasIssue "12" @default.
- W2964159112 hasLocation W29641591121 @default.
- W2964159112 hasLocation W29641591122 @default.
- W2964159112 hasLocation W29641591123 @default.
- W2964159112 hasLocation W29641591124 @default.
- W2964159112 hasLocation W29641591125 @default.
- W2964159112 hasLocation W29641591126 @default.
- W2964159112 hasLocation W29641591127 @default.
- W2964159112 hasLocation W29641591128 @default.
- W2964159112 hasOpenAccess W2964159112 @default.
- W2964159112 hasPrimaryLocation W29641591121 @default.
- W2964159112 hasRelatedWork W2124458868 @default.
- W2964159112 hasRelatedWork W2337702566 @default.
- W2964159112 hasRelatedWork W2600268204 @default.
- W2964159112 hasRelatedWork W3007430728 @default.
- W2964159112 hasRelatedWork W3011981250 @default.
- W2964159112 hasRelatedWork W3183148998 @default.
- W2964159112 hasRelatedWork W4206722294 @default.
- W2964159112 hasRelatedWork W4248060259 @default.
- W2964159112 hasRelatedWork W4376879830 @default.
- W2964159112 hasRelatedWork W2470063322 @default.
- W2964159112 hasVolume "354" @default.
- W2964159112 isParatext "false" @default.
- W2964159112 isRetracted "false" @default.
- W2964159112 magId "2964159112" @default.
- W2964159112 workType "article" @default.