Matches in SemOpenAlex for { <https://semopenalex.org/work/W2964165247> ?p ?o ?g. }
- W2964165247 endingPage "22" @default.
- W2964165247 startingPage "22" @default.
- W2964165247 abstract "Objective: Digital pathology is today a widely used technology, and the digitalization of microscopic slides into whole slide images (WSIs) allows the use of machine learning algorithms as a tool in the diagnostic process. In recent years, “deep learning” algorithms for image analysis have been applied to digital pathology with great success. The training of these algorithms requires a large volume of high-quality images and image annotations. These large image collections are a potent source of information, and to use and share the information, standardization of the content through a consistent terminology is essential. The aim of this project was to develop a pilot dataset of exhaustive annotated WSI of normal and abnormal human tissue and link the annotations to appropriate ontological information. Materials and Methods: Several biomedical ontologies and controlled vocabularies were investigated with the aim of selecting the most suitable ontology for this project. The selection criteria required an ontology that covered anatomical locations, histological subcompartments, histopathologic diagnoses, histopathologic terms, and generic terms such as normal, abnormal, and artifact. WSIs of normal and abnormal tissue from 50 colon resections and 69 skin excisions, diagnosed 2015-2016 at the Department of Clinical Pathology in Linköping, were randomly collected. These images were manually and exhaustively annotated at the level of major subcompartments, including normal or abnormal findings and artifacts. Results: Systemized nomenclature of medicine clinical terms (SNOMED CT) was chosen, and the annotations were linked to its codes and terms. Two hundred WSI were collected and annotated, resulting in 17,497 annotations, covering a total area of 302.19 cm2, equivalent to 107,7 gigapixels. Ninety-five unique SNOMED CT codes were used. The time taken to annotate a WSI varied from 45 s to over 360 min, a total time of approximately 360 h. Conclusion: This work resulted in a dataset of 200 exhaustive annotated WSIs of normal and abnormal tissue from the colon and skin, and it has informed plans to build a comprehensive library of annotated WSIs. SNOMED CT was found to be the best ontology for annotation labeling. This project also demonstrates the need for future development of annotation tools in order to make the annotation process more efficient." @default.
- W2964165247 created "2019-07-30" @default.
- W2964165247 creator A5001235418 @default.
- W2964165247 creator A5041152496 @default.
- W2964165247 creator A5043545263 @default.
- W2964165247 creator A5077011417 @default.
- W2964165247 creator A5082936216 @default.
- W2964165247 date "2019-01-01" @default.
- W2964165247 modified "2023-10-18" @default.
- W2964165247 title "Annotations, Ontologies, and Whole Slide Images – Development of an Annotated Ontology-Driven Whole Slide Image Library of Normal and Abnormal Human Tissue" @default.
- W2964165247 cites W194860589 @default.
- W2964165247 cites W1974195684 @default.
- W2964165247 cites W1986649315 @default.
- W2964165247 cites W2005294818 @default.
- W2964165247 cites W2008857142 @default.
- W2964165247 cites W2052330152 @default.
- W2964165247 cites W2053715834 @default.
- W2964165247 cites W2102480024 @default.
- W2964165247 cites W2105739910 @default.
- W2964165247 cites W2116089212 @default.
- W2964165247 cites W2125508691 @default.
- W2964165247 cites W2138425832 @default.
- W2964165247 cites W2148693438 @default.
- W2964165247 cites W2151608510 @default.
- W2964165247 cites W2151753845 @default.
- W2964165247 cites W2163670493 @default.
- W2964165247 cites W2239192454 @default.
- W2964165247 cites W2338609790 @default.
- W2964165247 cites W2461517348 @default.
- W2964165247 cites W2548598727 @default.
- W2964165247 cites W2562021322 @default.
- W2964165247 cites W2564463480 @default.
- W2964165247 cites W2574268335 @default.
- W2964165247 cites W2581082771 @default.
- W2964165247 cites W2592929672 @default.
- W2964165247 cites W2608035196 @default.
- W2964165247 cites W2738332719 @default.
- W2964165247 cites W3024223178 @default.
- W2964165247 cites W2977393556 @default.
- W2964165247 doi "https://doi.org/10.4103/jpi.jpi_81_18" @default.
- W2964165247 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6669998" @default.
- W2964165247 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31523480" @default.
- W2964165247 hasPublicationYear "2019" @default.
- W2964165247 type Work @default.
- W2964165247 sameAs 2964165247 @default.
- W2964165247 citedByCount "15" @default.
- W2964165247 countsByYear W29641652472020 @default.
- W2964165247 countsByYear W29641652472021 @default.
- W2964165247 countsByYear W29641652472022 @default.
- W2964165247 countsByYear W29641652472023 @default.
- W2964165247 crossrefType "journal-article" @default.
- W2964165247 hasAuthorship W2964165247A5001235418 @default.
- W2964165247 hasAuthorship W2964165247A5041152496 @default.
- W2964165247 hasAuthorship W2964165247A5043545263 @default.
- W2964165247 hasAuthorship W2964165247A5077011417 @default.
- W2964165247 hasAuthorship W2964165247A5082936216 @default.
- W2964165247 hasBestOaLocation W29641652471 @default.
- W2964165247 hasConcept C111472728 @default.
- W2964165247 hasConcept C111919701 @default.
- W2964165247 hasConcept C138885662 @default.
- W2964165247 hasConcept C142724271 @default.
- W2964165247 hasConcept C154945302 @default.
- W2964165247 hasConcept C188087704 @default.
- W2964165247 hasConcept C206497026 @default.
- W2964165247 hasConcept C23123220 @default.
- W2964165247 hasConcept C25810664 @default.
- W2964165247 hasConcept C2777522853 @default.
- W2964165247 hasConcept C41008148 @default.
- W2964165247 hasConcept C41895202 @default.
- W2964165247 hasConcept C547195049 @default.
- W2964165247 hasConcept C71924100 @default.
- W2964165247 hasConceptScore W2964165247C111472728 @default.
- W2964165247 hasConceptScore W2964165247C111919701 @default.
- W2964165247 hasConceptScore W2964165247C138885662 @default.
- W2964165247 hasConceptScore W2964165247C142724271 @default.
- W2964165247 hasConceptScore W2964165247C154945302 @default.
- W2964165247 hasConceptScore W2964165247C188087704 @default.
- W2964165247 hasConceptScore W2964165247C206497026 @default.
- W2964165247 hasConceptScore W2964165247C23123220 @default.
- W2964165247 hasConceptScore W2964165247C25810664 @default.
- W2964165247 hasConceptScore W2964165247C2777522853 @default.
- W2964165247 hasConceptScore W2964165247C41008148 @default.
- W2964165247 hasConceptScore W2964165247C41895202 @default.
- W2964165247 hasConceptScore W2964165247C547195049 @default.
- W2964165247 hasConceptScore W2964165247C71924100 @default.
- W2964165247 hasIssue "1" @default.
- W2964165247 hasLocation W29641652471 @default.
- W2964165247 hasLocation W29641652472 @default.
- W2964165247 hasLocation W29641652473 @default.
- W2964165247 hasLocation W29641652474 @default.
- W2964165247 hasLocation W29641652475 @default.
- W2964165247 hasLocation W29641652476 @default.
- W2964165247 hasOpenAccess W2964165247 @default.
- W2964165247 hasPrimaryLocation W29641652471 @default.
- W2964165247 hasRelatedWork W1511848092 @default.
- W2964165247 hasRelatedWork W1708042184 @default.
- W2964165247 hasRelatedWork W2039735462 @default.
- W2964165247 hasRelatedWork W2350181254 @default.