Matches in SemOpenAlex for { <https://semopenalex.org/work/W2964174777> ?p ?o ?g. }
Showing items 1 to 86 of
86
with 100 items per page.
- W2964174777 abstract "In this paper we study ideas which have proved useful in topological network theory in the context of lattices of numbers. A number lattice $L_S$ is a collection of row vectors, over $mathbb{Q}$ on a finite column set $S,$ generated by integral linear combination of a finite set of row vectors. A generalized number lattice $K_S$ is the sum of a number lattice $L_S$ and a vector space $V_S$ which has only the zero vector in common with it. The dual $K^d_S$ of a generalized number lattice is the collection of all vectors whose dot product with vectors in $K_S$ are integral and is another generalized number lattice. We consider a linking operation ('matched composition`) between generalized number lattices $K_{SP},K_{P}$ (regarded as collections of row vectors on column sets $Scup P, P,$ respectively with $S,P,$ disjoint) defined by $K_{SP}leftrightarrow K_{P}equiv {f_S:((f_S,g_P)in K_{SP}, g_P in K_{P}}.$ We show that this operation together with contraction and restriction, and the results, the implicit inversion theorem (which gives simple conditions for the equality $K_{SP}leftrightarrow (K_{SP}leftrightarrow K_S)= K_S,$ to hold) and implicit duality theorem ($(K_{SP}leftrightarrow K_{P})^d= K_{SP}^dleftrightarrow K_{P}^d$)), are both relevant and useful in suggesting problems concerning number lattices and their solutions. Using the implicit duality theorem, we give simple methods of constructing new self dual lattices from old. We also give new and efficient algorithms for the following. Given $V_{SP},K_P,$ such that $V_{SP}leftrightarrow (V_{SP}leftrightarrow K_P)= K_P,$ where $V_{SP}$ is a vector space with a totally unimodular basis matrix, to construct reduced bases for the number lattice part of $V_{SP}leftrightarrow K_P, K_P^d, (V_{SP}leftrightarrow K_P)^d,$ from a reduced basis for the number lattice part of $K_P.$" @default.
- W2964174777 created "2019-07-30" @default.
- W2964174777 creator A5029536777 @default.
- W2964174777 date "2019-07-17" @default.
- W2964174777 modified "2023-09-27" @default.
- W2964174777 title "On the linking of number lattices." @default.
- W2964174777 cites W1485280854 @default.
- W2964174777 cites W1557027117 @default.
- W2964174777 cites W1862524307 @default.
- W2964174777 cites W1973270757 @default.
- W2964174777 cites W1977584218 @default.
- W2964174777 cites W1977878416 @default.
- W2964174777 cites W1985138225 @default.
- W2964174777 cites W1997864729 @default.
- W2964174777 cites W2001093624 @default.
- W2964174777 cites W2015855792 @default.
- W2964174777 cites W2033812757 @default.
- W2964174777 cites W2047129940 @default.
- W2964174777 cites W2056492141 @default.
- W2964174777 cites W2072079288 @default.
- W2964174777 cites W2075421479 @default.
- W2964174777 cites W2111416661 @default.
- W2964174777 cites W2115002719 @default.
- W2964174777 cites W2133321180 @default.
- W2964174777 cites W2175796176 @default.
- W2964174777 cites W2324166574 @default.
- W2964174777 cites W2951286680 @default.
- W2964174777 cites W3144422206 @default.
- W2964174777 cites W612917828 @default.
- W2964174777 hasPublicationYear "2019" @default.
- W2964174777 type Work @default.
- W2964174777 sameAs 2964174777 @default.
- W2964174777 citedByCount "0" @default.
- W2964174777 crossrefType "posted-content" @default.
- W2964174777 hasAuthorship W2964174777A5029536777 @default.
- W2964174777 hasConcept C11413529 @default.
- W2964174777 hasConcept C114614502 @default.
- W2964174777 hasConcept C118615104 @default.
- W2964174777 hasConcept C121332964 @default.
- W2964174777 hasConcept C13336665 @default.
- W2964174777 hasConcept C168482242 @default.
- W2964174777 hasConcept C178489894 @default.
- W2964174777 hasConcept C202444582 @default.
- W2964174777 hasConcept C24890656 @default.
- W2964174777 hasConcept C2781204021 @default.
- W2964174777 hasConcept C33923547 @default.
- W2964174777 hasConcept C45340560 @default.
- W2964174777 hasConceptScore W2964174777C11413529 @default.
- W2964174777 hasConceptScore W2964174777C114614502 @default.
- W2964174777 hasConceptScore W2964174777C118615104 @default.
- W2964174777 hasConceptScore W2964174777C121332964 @default.
- W2964174777 hasConceptScore W2964174777C13336665 @default.
- W2964174777 hasConceptScore W2964174777C168482242 @default.
- W2964174777 hasConceptScore W2964174777C178489894 @default.
- W2964174777 hasConceptScore W2964174777C202444582 @default.
- W2964174777 hasConceptScore W2964174777C24890656 @default.
- W2964174777 hasConceptScore W2964174777C2781204021 @default.
- W2964174777 hasConceptScore W2964174777C33923547 @default.
- W2964174777 hasConceptScore W2964174777C45340560 @default.
- W2964174777 hasLocation W29641747771 @default.
- W2964174777 hasOpenAccess W2964174777 @default.
- W2964174777 hasPrimaryLocation W29641747771 @default.
- W2964174777 hasRelatedWork W138449874 @default.
- W2964174777 hasRelatedWork W1974343573 @default.
- W2964174777 hasRelatedWork W1991861504 @default.
- W2964174777 hasRelatedWork W2005721943 @default.
- W2964174777 hasRelatedWork W2014287551 @default.
- W2964174777 hasRelatedWork W2050465380 @default.
- W2964174777 hasRelatedWork W2100620009 @default.
- W2964174777 hasRelatedWork W2106085540 @default.
- W2964174777 hasRelatedWork W2136754517 @default.
- W2964174777 hasRelatedWork W2142947971 @default.
- W2964174777 hasRelatedWork W2167025208 @default.
- W2964174777 hasRelatedWork W2502916942 @default.
- W2964174777 hasRelatedWork W2886326260 @default.
- W2964174777 hasRelatedWork W2904435914 @default.
- W2964174777 hasRelatedWork W2949393036 @default.
- W2964174777 hasRelatedWork W2952162130 @default.
- W2964174777 hasRelatedWork W3033067952 @default.
- W2964174777 hasRelatedWork W3086038944 @default.
- W2964174777 hasRelatedWork W3209181443 @default.
- W2964174777 hasRelatedWork W2562178930 @default.
- W2964174777 isParatext "false" @default.
- W2964174777 isRetracted "false" @default.
- W2964174777 magId "2964174777" @default.
- W2964174777 workType "article" @default.