Matches in SemOpenAlex for { <https://semopenalex.org/work/W2964175364> ?p ?o ?g. }
- W2964175364 endingPage "134" @default.
- W2964175364 startingPage "130" @default.
- W2964175364 abstract "Abstract—The generalized binomial distribution in Tsallisstatistics (power-law system) is explicitly formulated from theprecise q-Stirling’s formula. Theα-divergence (orq-divergence)is uniquely derived from the generalized binomial distributionin the sense that when α → −1 (i.e., q → 1) it recovers KLdivergence obtained from the standard binomial distribution.Based on these combinatorial considerations, it is shown thatα-divergence (or q-divergence) is appeared as the generalizedrate function in the large deviation estimate in Tsallis statistics. I. I NTRODUCTION The large deviation principle (LDP for short) has mathemat-ically presented and quantified the asymptotic behavior of t heprobabilities of rare events in many stochastic phenomena. Ithas brought about deep significant insights for understandi ngof each phenomena [1][2][3]. The LDP covers quite broadareas ranging from the fundamentals in probability theoryand statistics to its applications such as statistical physics[4][5], risk management [6], information theory [7] and soon. In most of theoretical results in LDP, the assumption of“i.i.d. (independent and identically distributed)” for ra ndomvariables is used. This assumption leads to the discussion onthe exponential decay of rare events in stochastic phenomenawith great help of many well-established theoretical resultsbased on “i.i.d.” assumption. This strong “i.i.d.” assumpt ionhas been often tried to be weakened in many studies. Oneof the reasons is that actual observations generally do notsatisfy i.i.d. assumptions. A typical and well-known exampleis power-law behavior often observed in strongly correlatedsystems. In these cases we take Tsallis statistics as one ofsuch power-law systems because its mathematical foundationshas been widely explored [8].Along similar studies on LDP related with Tsallis statistics,there are a few papers such as [9] and [10]. The paper [9]discusses the possibility of LDP for the strongly correlatedrandom variables in Tsallis statistics. They consider the corre-lated coin tossing model based on the q-Gaussian distributionand numerically evaluate the possibility of a q-generalizationof LDP for a given q-divergence. On the other hand, ourpresent paper does not require the q-Gaussian distribution andthe q-divergence in advance for the large deviation estimate.Our approach is completely analytical starting from the funda-mental nonlinear differential equation dy/dx =y" @default.
- W2964175364 created "2019-07-30" @default.
- W2964175364 creator A5072973047 @default.
- W2964175364 creator A5086499705 @default.
- W2964175364 date "2014-12-11" @default.
- W2964175364 modified "2023-09-26" @default.
- W2964175364 title "α-divergence derived as the generalized rate function in a power-law system" @default.
- W2964175364 cites W1573082642 @default.
- W2964175364 cites W1576267150 @default.
- W2964175364 cites W1672879477 @default.
- W2964175364 cites W1967201779 @default.
- W2964175364 cites W1970111697 @default.
- W2964175364 cites W1973494188 @default.
- W2964175364 cites W1975087219 @default.
- W2964175364 cites W1983874169 @default.
- W2964175364 cites W1985679876 @default.
- W2964175364 cites W1994145980 @default.
- W2964175364 cites W2027790217 @default.
- W2964175364 cites W2038857613 @default.
- W2964175364 cites W2042587503 @default.
- W2964175364 cites W2047546246 @default.
- W2964175364 cites W2059120410 @default.
- W2964175364 cites W2068889624 @default.
- W2964175364 cites W2080601053 @default.
- W2964175364 cites W2095669515 @default.
- W2964175364 cites W2099111195 @default.
- W2964175364 cites W2170427775 @default.
- W2964175364 hasPublicationYear "2014" @default.
- W2964175364 type Work @default.
- W2964175364 sameAs 2964175364 @default.
- W2964175364 citedByCount "1" @default.
- W2964175364 countsByYear W29641753642017 @default.
- W2964175364 crossrefType "proceedings-article" @default.
- W2964175364 hasAuthorship W2964175364A5072973047 @default.
- W2964175364 hasAuthorship W2964175364A5086499705 @default.
- W2964175364 hasConcept C105795698 @default.
- W2964175364 hasConcept C110121322 @default.
- W2964175364 hasConcept C117521176 @default.
- W2964175364 hasConcept C121332964 @default.
- W2964175364 hasConcept C121864883 @default.
- W2964175364 hasConcept C122123141 @default.
- W2964175364 hasConcept C134306372 @default.
- W2964175364 hasConcept C138885662 @default.
- W2964175364 hasConcept C14036430 @default.
- W2964175364 hasConcept C141513077 @default.
- W2964175364 hasConcept C149441793 @default.
- W2964175364 hasConcept C151376022 @default.
- W2964175364 hasConcept C15964574 @default.
- W2964175364 hasConcept C207390915 @default.
- W2964175364 hasConcept C2780056601 @default.
- W2964175364 hasConcept C2781315470 @default.
- W2964175364 hasConcept C28826006 @default.
- W2964175364 hasConcept C33923547 @default.
- W2964175364 hasConcept C41895202 @default.
- W2964175364 hasConcept C75438885 @default.
- W2964175364 hasConcept C78458016 @default.
- W2964175364 hasConcept C86803240 @default.
- W2964175364 hasConcept C87040749 @default.
- W2964175364 hasConceptScore W2964175364C105795698 @default.
- W2964175364 hasConceptScore W2964175364C110121322 @default.
- W2964175364 hasConceptScore W2964175364C117521176 @default.
- W2964175364 hasConceptScore W2964175364C121332964 @default.
- W2964175364 hasConceptScore W2964175364C121864883 @default.
- W2964175364 hasConceptScore W2964175364C122123141 @default.
- W2964175364 hasConceptScore W2964175364C134306372 @default.
- W2964175364 hasConceptScore W2964175364C138885662 @default.
- W2964175364 hasConceptScore W2964175364C14036430 @default.
- W2964175364 hasConceptScore W2964175364C141513077 @default.
- W2964175364 hasConceptScore W2964175364C149441793 @default.
- W2964175364 hasConceptScore W2964175364C151376022 @default.
- W2964175364 hasConceptScore W2964175364C15964574 @default.
- W2964175364 hasConceptScore W2964175364C207390915 @default.
- W2964175364 hasConceptScore W2964175364C2780056601 @default.
- W2964175364 hasConceptScore W2964175364C2781315470 @default.
- W2964175364 hasConceptScore W2964175364C28826006 @default.
- W2964175364 hasConceptScore W2964175364C33923547 @default.
- W2964175364 hasConceptScore W2964175364C41895202 @default.
- W2964175364 hasConceptScore W2964175364C75438885 @default.
- W2964175364 hasConceptScore W2964175364C78458016 @default.
- W2964175364 hasConceptScore W2964175364C86803240 @default.
- W2964175364 hasConceptScore W2964175364C87040749 @default.
- W2964175364 hasLocation W29641753641 @default.
- W2964175364 hasOpenAccess W2964175364 @default.
- W2964175364 hasPrimaryLocation W29641753641 @default.
- W2964175364 hasRelatedWork W141060792 @default.
- W2964175364 hasRelatedWork W1976841380 @default.
- W2964175364 hasRelatedWork W2027404587 @default.
- W2964175364 hasRelatedWork W2050440352 @default.
- W2964175364 hasRelatedWork W2063558080 @default.
- W2964175364 hasRelatedWork W2099931811 @default.
- W2964175364 hasRelatedWork W2114012275 @default.
- W2964175364 hasRelatedWork W2126305447 @default.
- W2964175364 hasRelatedWork W2141800661 @default.
- W2964175364 hasRelatedWork W2171264697 @default.
- W2964175364 hasRelatedWork W2273444032 @default.
- W2964175364 hasRelatedWork W2763128746 @default.
- W2964175364 hasRelatedWork W2911439745 @default.
- W2964175364 hasRelatedWork W2915635916 @default.