Matches in SemOpenAlex for { <https://semopenalex.org/work/W2964183520> ?p ?o ?g. }
- W2964183520 endingPage "164" @default.
- W2964183520 startingPage "154" @default.
- W2964183520 abstract "The accurate diagnosis and assessment of neurodegenerative disease and traumatic brain injuries (TBI) remain open challenges. Both cause cognitive and functional deficits due to focal axonal swellings (FAS), but it is difficult to deliver a prognosis due to our limited ability to assess damaged neurons at a cellular level in vivo. We simulate the effects of neurodegenerative disease and TBI using convolutional neural networks (CNNs) as our model of cognition. We utilize biophysically relevant statistical data on FAS to damage the connections in CNNs in a functionally relevant way. We incorporate energy constraints on the brain by pruning the CNNs to be less over-engineered. Qualitatively, we demonstrate that damage leads to human-like mistakes. Our experiments also provide quantitative assessments of how accuracy is affected by various types and levels of damage. The deficit resulting from a fixed amount of damage greatly depends on which connections are randomly injured, providing intuition for why it is difficult to predict impairments. There is a large degree of subjectivity when it comes to interpreting cognitive deficits from complex systems such as the human brain. However, we provide important insight and a quantitative framework for disorders in which FAS are implicated." @default.
- W2964183520 created "2019-07-30" @default.
- W2964183520 creator A5050542161 @default.
- W2964183520 creator A5070667836 @default.
- W2964183520 creator A5083450863 @default.
- W2964183520 creator A5090344037 @default.
- W2964183520 date "2018-06-01" @default.
- W2964183520 modified "2023-09-28" @default.
- W2964183520 title "Modeling cognitive deficits following neurodegenerative diseases and traumatic brain injuries with deep convolutional neural networks" @default.
- W2964183520 cites W1485683953 @default.
- W2964183520 cites W1605886981 @default.
- W2964183520 cites W1673584506 @default.
- W2964183520 cites W1715013381 @default.
- W2964183520 cites W1934091276 @default.
- W2964183520 cites W1966197218 @default.
- W2964183520 cites W1977687604 @default.
- W2964183520 cites W1983485726 @default.
- W2964183520 cites W1988138393 @default.
- W2964183520 cites W1990339002 @default.
- W2964183520 cites W2002433576 @default.
- W2964183520 cites W2006524711 @default.
- W2964183520 cites W2009105636 @default.
- W2964183520 cites W2012664119 @default.
- W2964183520 cites W2012846826 @default.
- W2964183520 cites W2015049091 @default.
- W2964183520 cites W2019450648 @default.
- W2964183520 cites W2023819682 @default.
- W2964183520 cites W2027704676 @default.
- W2964183520 cites W2029934068 @default.
- W2964183520 cites W2035282767 @default.
- W2964183520 cites W2036978773 @default.
- W2964183520 cites W2040036684 @default.
- W2964183520 cites W2042991032 @default.
- W2964183520 cites W2044549748 @default.
- W2964183520 cites W2051274614 @default.
- W2964183520 cites W2058606598 @default.
- W2964183520 cites W2058616551 @default.
- W2964183520 cites W2060347354 @default.
- W2964183520 cites W2064707507 @default.
- W2964183520 cites W2083603307 @default.
- W2964183520 cites W2083952664 @default.
- W2964183520 cites W2085799852 @default.
- W2964183520 cites W2099180554 @default.
- W2964183520 cites W2101926813 @default.
- W2964183520 cites W2106837589 @default.
- W2964183520 cites W2109273473 @default.
- W2964183520 cites W2116360511 @default.
- W2964183520 cites W2116838881 @default.
- W2964183520 cites W2117539524 @default.
- W2964183520 cites W2128332802 @default.
- W2964183520 cites W2132907436 @default.
- W2964183520 cites W2137983211 @default.
- W2964183520 cites W2139847243 @default.
- W2964183520 cites W2141740654 @default.
- W2964183520 cites W2144662207 @default.
- W2964183520 cites W2147516066 @default.
- W2964183520 cites W2153739550 @default.
- W2964183520 cites W2158156478 @default.
- W2964183520 cites W2161240378 @default.
- W2964183520 cites W2163396968 @default.
- W2964183520 cites W2166206801 @default.
- W2964183520 cites W2168056663 @default.
- W2964183520 cites W2168516263 @default.
- W2964183520 cites W2170921124 @default.
- W2964183520 cites W2172809131 @default.
- W2964183520 cites W2176287621 @default.
- W2964183520 cites W2274405424 @default.
- W2964183520 cites W2274863439 @default.
- W2964183520 cites W2277158176 @default.
- W2964183520 cites W2280952433 @default.
- W2964183520 cites W2289107316 @default.
- W2964183520 cites W2311228285 @default.
- W2964183520 cites W2334007073 @default.
- W2964183520 cites W2402207800 @default.
- W2964183520 cites W2736091234 @default.
- W2964183520 cites W2951200949 @default.
- W2964183520 cites W2963173190 @default.
- W2964183520 cites W2963902762 @default.
- W2964183520 cites W3105399859 @default.
- W2964183520 cites W875519411 @default.
- W2964183520 doi "https://doi.org/10.1016/j.bandc.2018.02.012" @default.
- W2964183520 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/29597065" @default.
- W2964183520 hasPublicationYear "2018" @default.
- W2964183520 type Work @default.
- W2964183520 sameAs 2964183520 @default.
- W2964183520 citedByCount "9" @default.
- W2964183520 countsByYear W29641835202018 @default.
- W2964183520 countsByYear W29641835202019 @default.
- W2964183520 countsByYear W29641835202020 @default.
- W2964183520 countsByYear W29641835202021 @default.
- W2964183520 countsByYear W29641835202023 @default.
- W2964183520 crossrefType "journal-article" @default.
- W2964183520 hasAuthorship W2964183520A5050542161 @default.
- W2964183520 hasAuthorship W2964183520A5070667836 @default.
- W2964183520 hasAuthorship W2964183520A5083450863 @default.
- W2964183520 hasAuthorship W2964183520A5090344037 @default.
- W2964183520 hasBestOaLocation W29641835202 @default.
- W2964183520 hasConcept C118552586 @default.