Matches in SemOpenAlex for { <https://semopenalex.org/work/W2964187418> ?p ?o ?g. }
- W2964187418 endingPage "115807" @default.
- W2964187418 startingPage "115807" @default.
- W2964187418 abstract "A computational model for designing direct-load control (DLC) demand response (DR) contracts is presented in this paper. The critical and controllable loads are identified in each node of the distribution system (DS). Critical loads have to be supplied as demanded by users, while the controllable loads can be connected during a determined time interval. The time interval at which each controllable load can be supplied is determined by means of a contract or compromise established between the utility operator and the corresponding consumers of each node of the DS. This approach allows us to reduce the negative impact of the DLC program on consumers’ lifestyles. Using daily forecasting of wind speed and power, solar radiation and temperature, the optimal allocation of DR resources is determined by solving an optimization problem through a genetic algorithm where the energy content of conventional power generation and battery discharging energy are minimized. The proposed approach was illustrated by analyzing a system located in the Virgin Islands. Capabilities and characteristics of the proposed method in daily and annual terms are fully discussed, as well as the influence of forecasting errors." @default.
- W2964187418 created "2019-07-30" @default.
- W2964187418 creator A5009746093 @default.
- W2964187418 creator A5017639918 @default.
- W2964187418 creator A5045380953 @default.
- W2964187418 creator A5065382518 @default.
- W2964187418 creator A5086676630 @default.
- W2964187418 creator A5090550837 @default.
- W2964187418 date "2019-11-01" @default.
- W2964187418 modified "2023-10-17" @default.
- W2964187418 title "Contract design of direct-load control programs and their optimal management by genetic algorithm" @default.
- W2964187418 cites W1473795815 @default.
- W2964187418 cites W1979406985 @default.
- W2964187418 cites W1990886506 @default.
- W2964187418 cites W2005793978 @default.
- W2964187418 cites W2016389878 @default.
- W2964187418 cites W2026516035 @default.
- W2964187418 cites W2030810955 @default.
- W2964187418 cites W2038580792 @default.
- W2964187418 cites W2065321023 @default.
- W2964187418 cites W2072955302 @default.
- W2964187418 cites W2087062834 @default.
- W2964187418 cites W2153332004 @default.
- W2964187418 cites W2325927749 @default.
- W2964187418 cites W2509613771 @default.
- W2964187418 cites W2515518038 @default.
- W2964187418 cites W2564642917 @default.
- W2964187418 cites W2606661009 @default.
- W2964187418 cites W271394661 @default.
- W2964187418 cites W2766576245 @default.
- W2964187418 cites W2783263312 @default.
- W2964187418 cites W2787327911 @default.
- W2964187418 cites W2791293037 @default.
- W2964187418 cites W2888350769 @default.
- W2964187418 cites W2897044963 @default.
- W2964187418 cites W2901282401 @default.
- W2964187418 cites W2902698795 @default.
- W2964187418 cites W2903056424 @default.
- W2964187418 cites W2903507600 @default.
- W2964187418 cites W2904635416 @default.
- W2964187418 cites W2905087257 @default.
- W2964187418 cites W2907728924 @default.
- W2964187418 cites W2908432631 @default.
- W2964187418 cites W2908571787 @default.
- W2964187418 cites W2911322313 @default.
- W2964187418 cites W2912369086 @default.
- W2964187418 cites W2914098925 @default.
- W2964187418 cites W2963317745 @default.
- W2964187418 doi "https://doi.org/10.1016/j.energy.2019.07.137" @default.
- W2964187418 hasPublicationYear "2019" @default.
- W2964187418 type Work @default.
- W2964187418 sameAs 2964187418 @default.
- W2964187418 citedByCount "12" @default.
- W2964187418 countsByYear W29641874182020 @default.
- W2964187418 countsByYear W29641874182021 @default.
- W2964187418 countsByYear W29641874182022 @default.
- W2964187418 countsByYear W29641874182023 @default.
- W2964187418 crossrefType "journal-article" @default.
- W2964187418 hasAuthorship W2964187418A5009746093 @default.
- W2964187418 hasAuthorship W2964187418A5017639918 @default.
- W2964187418 hasAuthorship W2964187418A5045380953 @default.
- W2964187418 hasAuthorship W2964187418A5065382518 @default.
- W2964187418 hasAuthorship W2964187418A5086676630 @default.
- W2964187418 hasAuthorship W2964187418A5090550837 @default.
- W2964187418 hasBestOaLocation W29641874182 @default.
- W2964187418 hasConcept C104317684 @default.
- W2964187418 hasConcept C105795698 @default.
- W2964187418 hasConcept C114614502 @default.
- W2964187418 hasConcept C119599485 @default.
- W2964187418 hasConcept C121332964 @default.
- W2964187418 hasConcept C126255220 @default.
- W2964187418 hasConcept C127413603 @default.
- W2964187418 hasConcept C154945302 @default.
- W2964187418 hasConcept C158448853 @default.
- W2964187418 hasConcept C163258240 @default.
- W2964187418 hasConcept C17020691 @default.
- W2964187418 hasConcept C185592680 @default.
- W2964187418 hasConcept C186370098 @default.
- W2964187418 hasConcept C200601418 @default.
- W2964187418 hasConcept C206658404 @default.
- W2964187418 hasConcept C2775924081 @default.
- W2964187418 hasConcept C2778067643 @default.
- W2964187418 hasConcept C2779438525 @default.
- W2964187418 hasConcept C33923547 @default.
- W2964187418 hasConcept C41008148 @default.
- W2964187418 hasConcept C44154836 @default.
- W2964187418 hasConcept C55493867 @default.
- W2964187418 hasConcept C555008776 @default.
- W2964187418 hasConcept C62520636 @default.
- W2964187418 hasConcept C62611344 @default.
- W2964187418 hasConcept C66938386 @default.
- W2964187418 hasConcept C7817414 @default.
- W2964187418 hasConcept C78600449 @default.
- W2964187418 hasConcept C86339819 @default.
- W2964187418 hasConcept C8880873 @default.
- W2964187418 hasConceptScore W2964187418C104317684 @default.
- W2964187418 hasConceptScore W2964187418C105795698 @default.
- W2964187418 hasConceptScore W2964187418C114614502 @default.