Matches in SemOpenAlex for { <https://semopenalex.org/work/W2964188889> ?p ?o ?g. }
- W2964188889 endingPage "3331" @default.
- W2964188889 startingPage "3322" @default.
- W2964188889 abstract "The recently proposed principal component analysis network (PCANet) has performed well with respect to the classification of 2-D images. However, feature extraction may perform less well when dealing with multi-dimensional images, since the spatial relationships within the structures of the images are not fully utilized. In this paper, we develop a multilinear principal component analysis network (MPCANet), which is a tensor extension of PCANet, to extract the high-level semantic features from multi-dimensional images. The extracted features largely minimize the intraclass invariance of tensor objects by making efficient use of spatial relationships within multi-dimensional images. The proposed MPCANet outperforms traditional methods on a benchmark composed of three data sets, including the UCF sports action database, the UCF11 database, and a medical image database. It is shown that even a simple one-layer MPCANet may outperform a two-layer PCANet." @default.
- W2964188889 created "2019-07-30" @default.
- W2964188889 creator A5011068595 @default.
- W2964188889 creator A5025698193 @default.
- W2964188889 creator A5028457159 @default.
- W2964188889 creator A5042978732 @default.
- W2964188889 creator A5054919439 @default.
- W2964188889 creator A5078388244 @default.
- W2964188889 date "2017-01-01" @default.
- W2964188889 modified "2023-10-15" @default.
- W2964188889 title "Multilinear Principal Component Analysis Network for Tensor Object Classification" @default.
- W2964188889 cites W1559535184 @default.
- W2964188889 cites W1979261386 @default.
- W2964188889 cites W1986626334 @default.
- W2964188889 cites W1999113165 @default.
- W2964188889 cites W2017672513 @default.
- W2964188889 cites W2035199208 @default.
- W2964188889 cites W2042743306 @default.
- W2964188889 cites W2061879449 @default.
- W2964188889 cites W2095168618 @default.
- W2964188889 cites W2097117768 @default.
- W2964188889 cites W2101194540 @default.
- W2964188889 cites W2102544846 @default.
- W2964188889 cites W2108597378 @default.
- W2964188889 cites W2112796928 @default.
- W2964188889 cites W2121323570 @default.
- W2964188889 cites W2141168890 @default.
- W2964188889 cites W2141200867 @default.
- W2964188889 cites W2186155590 @default.
- W2964188889 cites W2288560581 @default.
- W2964188889 cites W2336848377 @default.
- W2964188889 cites W2471508382 @default.
- W2964188889 cites W2490340419 @default.
- W2964188889 cites W2507989420 @default.
- W2964188889 cites W2526058533 @default.
- W2964188889 cites W2554395982 @default.
- W2964188889 cites W2963334250 @default.
- W2964188889 cites W3102431071 @default.
- W2964188889 doi "https://doi.org/10.1109/access.2017.2675478" @default.
- W2964188889 hasPublicationYear "2017" @default.
- W2964188889 type Work @default.
- W2964188889 sameAs 2964188889 @default.
- W2964188889 citedByCount "28" @default.
- W2964188889 countsByYear W29641888892017 @default.
- W2964188889 countsByYear W29641888892018 @default.
- W2964188889 countsByYear W29641888892019 @default.
- W2964188889 countsByYear W29641888892020 @default.
- W2964188889 countsByYear W29641888892021 @default.
- W2964188889 countsByYear W29641888892022 @default.
- W2964188889 countsByYear W29641888892023 @default.
- W2964188889 crossrefType "journal-article" @default.
- W2964188889 hasAuthorship W2964188889A5011068595 @default.
- W2964188889 hasAuthorship W2964188889A5025698193 @default.
- W2964188889 hasAuthorship W2964188889A5028457159 @default.
- W2964188889 hasAuthorship W2964188889A5042978732 @default.
- W2964188889 hasAuthorship W2964188889A5054919439 @default.
- W2964188889 hasAuthorship W2964188889A5078388244 @default.
- W2964188889 hasBestOaLocation W29641888891 @default.
- W2964188889 hasConcept C113315163 @default.
- W2964188889 hasConcept C115961682 @default.
- W2964188889 hasConcept C124101348 @default.
- W2964188889 hasConcept C138885662 @default.
- W2964188889 hasConcept C153180895 @default.
- W2964188889 hasConcept C154945302 @default.
- W2964188889 hasConcept C155281189 @default.
- W2964188889 hasConcept C202444582 @default.
- W2964188889 hasConcept C27438332 @default.
- W2964188889 hasConcept C2776401178 @default.
- W2964188889 hasConcept C33923547 @default.
- W2964188889 hasConcept C41008148 @default.
- W2964188889 hasConcept C41895202 @default.
- W2964188889 hasConcept C52622490 @default.
- W2964188889 hasConcept C84392682 @default.
- W2964188889 hasConceptScore W2964188889C113315163 @default.
- W2964188889 hasConceptScore W2964188889C115961682 @default.
- W2964188889 hasConceptScore W2964188889C124101348 @default.
- W2964188889 hasConceptScore W2964188889C138885662 @default.
- W2964188889 hasConceptScore W2964188889C153180895 @default.
- W2964188889 hasConceptScore W2964188889C154945302 @default.
- W2964188889 hasConceptScore W2964188889C155281189 @default.
- W2964188889 hasConceptScore W2964188889C202444582 @default.
- W2964188889 hasConceptScore W2964188889C27438332 @default.
- W2964188889 hasConceptScore W2964188889C2776401178 @default.
- W2964188889 hasConceptScore W2964188889C33923547 @default.
- W2964188889 hasConceptScore W2964188889C41008148 @default.
- W2964188889 hasConceptScore W2964188889C41895202 @default.
- W2964188889 hasConceptScore W2964188889C52622490 @default.
- W2964188889 hasConceptScore W2964188889C84392682 @default.
- W2964188889 hasFunder F4320321001 @default.
- W2964188889 hasFunder F4320327794 @default.
- W2964188889 hasLocation W29641888891 @default.
- W2964188889 hasLocation W29641888892 @default.
- W2964188889 hasLocation W29641888893 @default.
- W2964188889 hasOpenAccess W2964188889 @default.
- W2964188889 hasPrimaryLocation W29641888891 @default.
- W2964188889 hasRelatedWork W1979158802 @default.
- W2964188889 hasRelatedWork W2039401989 @default.
- W2964188889 hasRelatedWork W2091080939 @default.