Matches in SemOpenAlex for { <https://semopenalex.org/work/W2964201526> ?p ?o ?g. }
Showing items 1 to 90 of
90
with 100 items per page.
- W2964201526 endingPage "448" @default.
- W2964201526 startingPage "438" @default.
- W2964201526 abstract "Bayesian network structure learning is often performed in a Bayesian setting, by evaluating candidate structures using their posterior probabilities for a given data set. Score-based algorithms then use those posterior probabilities as an objective function and return the maximum a posteriori network as the learned model. For discrete Bayesian networks, the canonical choice for a posterior score is the Bayesian Dirichlet equivalent uniform (BDeu) marginal likelihood with a uniform (U) graph prior (Heckerman et al., 1995). Its favourable theoretical properties descend from assuming a uniform prior both on the space of the network structures and on the space of the parameters of the network. In this paper, we revisit the limitations of these assumptions; and we introduce an alternative set of assumptions and the resulting score: the Bayesian Dirichlet sparse (BDs) empirical Bayes marginal likelihood with a marginal uniform (MU) graph prior. We evaluate its performance in an extensive simulation study, showing that MU+BDs is more accurate than U+BDeu both in learning the structure of the network and in predicting new observations, while not being computationally more complex to estimate." @default.
- W2964201526 created "2019-07-30" @default.
- W2964201526 creator A5059820079 @default.
- W2964201526 date "2016-08-15" @default.
- W2964201526 modified "2023-09-26" @default.
- W2964201526 title "An Empirical-Bayes Score for Discrete Bayesian Networks" @default.
- W2964201526 hasPublicationYear "2016" @default.
- W2964201526 type Work @default.
- W2964201526 sameAs 2964201526 @default.
- W2964201526 citedByCount "6" @default.
- W2964201526 countsByYear W29642015262017 @default.
- W2964201526 countsByYear W29642015262018 @default.
- W2964201526 countsByYear W29642015262019 @default.
- W2964201526 countsByYear W29642015262020 @default.
- W2964201526 countsByYear W29642015262021 @default.
- W2964201526 crossrefType "proceedings-article" @default.
- W2964201526 hasAuthorship W2964201526A5059820079 @default.
- W2964201526 hasConcept C105795698 @default.
- W2964201526 hasConcept C107673813 @default.
- W2964201526 hasConcept C11413529 @default.
- W2964201526 hasConcept C119857082 @default.
- W2964201526 hasConcept C134306372 @default.
- W2964201526 hasConcept C142291917 @default.
- W2964201526 hasConcept C154945302 @default.
- W2964201526 hasConcept C160234255 @default.
- W2964201526 hasConcept C167928553 @default.
- W2964201526 hasConcept C169214877 @default.
- W2964201526 hasConcept C177769412 @default.
- W2964201526 hasConcept C182310444 @default.
- W2964201526 hasConcept C207201462 @default.
- W2964201526 hasConcept C33724603 @default.
- W2964201526 hasConcept C33923547 @default.
- W2964201526 hasConcept C41008148 @default.
- W2964201526 hasConcept C49781872 @default.
- W2964201526 hasConcept C57830394 @default.
- W2964201526 hasConcept C71983512 @default.
- W2964201526 hasConcept C89106044 @default.
- W2964201526 hasConcept C95923904 @default.
- W2964201526 hasConcept C9810830 @default.
- W2964201526 hasConceptScore W2964201526C105795698 @default.
- W2964201526 hasConceptScore W2964201526C107673813 @default.
- W2964201526 hasConceptScore W2964201526C11413529 @default.
- W2964201526 hasConceptScore W2964201526C119857082 @default.
- W2964201526 hasConceptScore W2964201526C134306372 @default.
- W2964201526 hasConceptScore W2964201526C142291917 @default.
- W2964201526 hasConceptScore W2964201526C154945302 @default.
- W2964201526 hasConceptScore W2964201526C160234255 @default.
- W2964201526 hasConceptScore W2964201526C167928553 @default.
- W2964201526 hasConceptScore W2964201526C169214877 @default.
- W2964201526 hasConceptScore W2964201526C177769412 @default.
- W2964201526 hasConceptScore W2964201526C182310444 @default.
- W2964201526 hasConceptScore W2964201526C207201462 @default.
- W2964201526 hasConceptScore W2964201526C33724603 @default.
- W2964201526 hasConceptScore W2964201526C33923547 @default.
- W2964201526 hasConceptScore W2964201526C41008148 @default.
- W2964201526 hasConceptScore W2964201526C49781872 @default.
- W2964201526 hasConceptScore W2964201526C57830394 @default.
- W2964201526 hasConceptScore W2964201526C71983512 @default.
- W2964201526 hasConceptScore W2964201526C89106044 @default.
- W2964201526 hasConceptScore W2964201526C95923904 @default.
- W2964201526 hasConceptScore W2964201526C9810830 @default.
- W2964201526 hasLocation W29642015261 @default.
- W2964201526 hasOpenAccess W2964201526 @default.
- W2964201526 hasPrimaryLocation W29642015261 @default.
- W2964201526 hasRelatedWork W1563730461 @default.
- W2964201526 hasRelatedWork W1568555062 @default.
- W2964201526 hasRelatedWork W1590398161 @default.
- W2964201526 hasRelatedWork W1934306740 @default.
- W2964201526 hasRelatedWork W1963561408 @default.
- W2964201526 hasRelatedWork W2005492100 @default.
- W2964201526 hasRelatedWork W2014556363 @default.
- W2964201526 hasRelatedWork W2040536472 @default.
- W2964201526 hasRelatedWork W2081758401 @default.
- W2964201526 hasRelatedWork W2122477496 @default.
- W2964201526 hasRelatedWork W2128088446 @default.
- W2964201526 hasRelatedWork W2133091666 @default.
- W2964201526 hasRelatedWork W2149337551 @default.
- W2964201526 hasRelatedWork W2165190832 @default.
- W2964201526 hasRelatedWork W2170112109 @default.
- W2964201526 hasRelatedWork W2291406709 @default.
- W2964201526 hasRelatedWork W2371566906 @default.
- W2964201526 hasRelatedWork W2403155714 @default.
- W2964201526 hasRelatedWork W2467600504 @default.
- W2964201526 hasRelatedWork W2766659256 @default.
- W2964201526 isParatext "false" @default.
- W2964201526 isRetracted "false" @default.
- W2964201526 magId "2964201526" @default.
- W2964201526 workType "article" @default.