Matches in SemOpenAlex for { <https://semopenalex.org/work/W2964210005> ?p ?o ?g. }
- W2964210005 abstract "Measuring the causal impact of an advertising campaign on sales is an essential task for advertising companies. Challenges arise when companies run advertising campaigns in multiple stores which are spatially correlated, and when the sales data have a low signal-to-noise ratio which makes the advertising effects hard to detect. This paper proposes a solution to address both of these challenges. A novel Bayesian method is proposed to detect weaker impacts and a multivariate structural time series model is used to capture the spatial correlation between stores through placing a G-Wishart prior on the precision matrix. The new method is to compare two posterior distributions of a latent variable—one obtained by using the observed data from the test stores and the other one obtained by using the data from their counterfactual potential outcomes. The counterfactual potential outcomes are estimated from the data of synthetic controls, each of which is a linear combination of sales figures at many control stores over the causal period. Control stores are selected using a revised Expectation-Maximization variable selection (EMVS) method. A two-stage algorithm is proposed to estimate the parameters of the model. To prevent the prediction intervals from being explosive, a stationarity constraint is imposed on the local linear trend of the model through a recently proposed prior. The benefit of using this prior is discussed in this paper. A detailed simulation study shows the effectiveness of using our proposed method to detect weaker causal impact. The new method is applied to measure the causal effect of an advertising campaign for a consumer product sold at stores of a large national retail chain." @default.
- W2964210005 created "2019-07-30" @default.
- W2964210005 creator A5009377108 @default.
- W2964210005 creator A5011476402 @default.
- W2964210005 creator A5043161394 @default.
- W2964210005 date "2019-03-01" @default.
- W2964210005 modified "2023-10-09" @default.
- W2964210005 title "Bayesian Method for Causal Inference in Spatially-Correlated Multivariate Time Series" @default.
- W2964210005 cites W1516659296 @default.
- W2964210005 cites W1970860874 @default.
- W2964210005 cites W1975138225 @default.
- W2964210005 cites W1978108654 @default.
- W2964210005 cites W1979115894 @default.
- W2964210005 cites W1987078627 @default.
- W2964210005 cites W1992866626 @default.
- W2964210005 cites W1998653759 @default.
- W2964210005 cites W2000045933 @default.
- W2964210005 cites W2007069447 @default.
- W2964210005 cites W2007463795 @default.
- W2964210005 cites W2033120023 @default.
- W2964210005 cites W2051264056 @default.
- W2964210005 cites W2055025635 @default.
- W2964210005 cites W2055841987 @default.
- W2964210005 cites W2064971013 @default.
- W2964210005 cites W2068887647 @default.
- W2964210005 cites W2077515295 @default.
- W2964210005 cites W2078639378 @default.
- W2964210005 cites W2132917208 @default.
- W2964210005 cites W2143661751 @default.
- W2964210005 cites W2147750192 @default.
- W2964210005 cites W2152135597 @default.
- W2964210005 cites W2154062944 @default.
- W2964210005 cites W2155163959 @default.
- W2964210005 cites W2171656257 @default.
- W2964210005 cites W2333053474 @default.
- W2964210005 cites W2952220587 @default.
- W2964210005 cites W2963145051 @default.
- W2964210005 cites W2963989473 @default.
- W2964210005 cites W2964182087 @default.
- W2964210005 cites W2964210005 @default.
- W2964210005 cites W3104258896 @default.
- W2964210005 cites W3126123762 @default.
- W2964210005 cites W3150893739 @default.
- W2964210005 cites W4231057675 @default.
- W2964210005 cites W4240735488 @default.
- W2964210005 cites W4382892784 @default.
- W2964210005 doi "https://doi.org/10.1214/18-ba1102" @default.
- W2964210005 hasPublicationYear "2019" @default.
- W2964210005 type Work @default.
- W2964210005 sameAs 2964210005 @default.
- W2964210005 citedByCount "12" @default.
- W2964210005 countsByYear W29642100052018 @default.
- W2964210005 countsByYear W29642100052019 @default.
- W2964210005 countsByYear W29642100052020 @default.
- W2964210005 countsByYear W29642100052021 @default.
- W2964210005 countsByYear W29642100052022 @default.
- W2964210005 countsByYear W29642100052023 @default.
- W2964210005 crossrefType "journal-article" @default.
- W2964210005 hasAuthorship W2964210005A5009377108 @default.
- W2964210005 hasAuthorship W2964210005A5011476402 @default.
- W2964210005 hasAuthorship W2964210005A5043161394 @default.
- W2964210005 hasBestOaLocation W29642100051 @default.
- W2964210005 hasConcept C105795698 @default.
- W2964210005 hasConcept C107673813 @default.
- W2964210005 hasConcept C108650721 @default.
- W2964210005 hasConcept C111472728 @default.
- W2964210005 hasConcept C119857082 @default.
- W2964210005 hasConcept C124101348 @default.
- W2964210005 hasConcept C138885662 @default.
- W2964210005 hasConcept C143724316 @default.
- W2964210005 hasConcept C149782125 @default.
- W2964210005 hasConcept C151730666 @default.
- W2964210005 hasConcept C154945302 @default.
- W2964210005 hasConcept C158600405 @default.
- W2964210005 hasConcept C161584116 @default.
- W2964210005 hasConcept C197640229 @default.
- W2964210005 hasConcept C2780009758 @default.
- W2964210005 hasConcept C33923547 @default.
- W2964210005 hasConcept C41008148 @default.
- W2964210005 hasConcept C86803240 @default.
- W2964210005 hasConceptScore W2964210005C105795698 @default.
- W2964210005 hasConceptScore W2964210005C107673813 @default.
- W2964210005 hasConceptScore W2964210005C108650721 @default.
- W2964210005 hasConceptScore W2964210005C111472728 @default.
- W2964210005 hasConceptScore W2964210005C119857082 @default.
- W2964210005 hasConceptScore W2964210005C124101348 @default.
- W2964210005 hasConceptScore W2964210005C138885662 @default.
- W2964210005 hasConceptScore W2964210005C143724316 @default.
- W2964210005 hasConceptScore W2964210005C149782125 @default.
- W2964210005 hasConceptScore W2964210005C151730666 @default.
- W2964210005 hasConceptScore W2964210005C154945302 @default.
- W2964210005 hasConceptScore W2964210005C158600405 @default.
- W2964210005 hasConceptScore W2964210005C161584116 @default.
- W2964210005 hasConceptScore W2964210005C197640229 @default.
- W2964210005 hasConceptScore W2964210005C2780009758 @default.
- W2964210005 hasConceptScore W2964210005C33923547 @default.
- W2964210005 hasConceptScore W2964210005C41008148 @default.
- W2964210005 hasConceptScore W2964210005C86803240 @default.
- W2964210005 hasIssue "1" @default.
- W2964210005 hasLocation W29642100051 @default.