Matches in SemOpenAlex for { <https://semopenalex.org/work/W2964210007> ?p ?o ?g. }
- W2964210007 endingPage "188" @default.
- W2964210007 startingPage "165" @default.
- W2964210007 abstract "Several static analysis tools, such as Splint or FindBugs, have been proposed to the software development community to help detect security vulnerabilities or bad programming practices. However, the adoption of these tools is hindered by their high false positive rates. If the false positive rate is too high, developers may get acclimated to violation reports from these tools, causing concrete and severe bugs being overlooked. Fortunately, some violations are actually addressed and resolved by developers. We claim that those violations that are recurrently fixed are likely to be true positives, and an automated approach can learn to repair similar unseen violations. However, there is lack of a systematic way to investigate the distributions on existing violations and fixed ones in the wild, that can provide insights into prioritizing violations for developers, and an effective way to mine code and fix patterns which can help developers easily understand the reasons of leading violations and how to fix them. In this paper, we first collect and track a large number of fixed and unfixed violations across revisions of software. The empirical analyses reveal that there are discrepancies in the distributions of violations that are detected and those that are fixed, in terms of occurrences, spread and categories, which can provide insights into prioritizing violations. To automatically identify patterns in violations and their fixes, we propose an approach that utilizes convolutional neural networks to learn features and clustering to regroup similar instances. We then evaluate the usefulness of the identified fix patterns by applying them to unfixed violations. The results show that developers will accept and merge a majority (69/116) of fixes generated from the inferred fix patterns. It is also noteworthy that the yielded patterns are applicable to four real bugs in the Defects4J major benchmark for software testing and automated repair." @default.
- W2964210007 created "2019-07-30" @default.
- W2964210007 creator A5035099591 @default.
- W2964210007 creator A5040574362 @default.
- W2964210007 creator A5070401254 @default.
- W2964210007 creator A5082835974 @default.
- W2964210007 creator A5091149210 @default.
- W2964210007 date "2021-01-01" @default.
- W2964210007 modified "2023-10-16" @default.
- W2964210007 title "Mining Fix Patterns for FindBugs Violations" @default.
- W2964210007 cites W1485912969 @default.
- W2964210007 cites W1843794072 @default.
- W2964210007 cites W1971137495 @default.
- W2964210007 cites W1984041362 @default.
- W2964210007 cites W1986816528 @default.
- W2964210007 cites W2008626182 @default.
- W2964210007 cites W2009526138 @default.
- W2964210007 cites W2025791343 @default.
- W2964210007 cites W2039772616 @default.
- W2964210007 cites W2043811931 @default.
- W2964210007 cites W2048381541 @default.
- W2964210007 cites W2050838465 @default.
- W2964210007 cites W2053465247 @default.
- W2964210007 cites W2060404290 @default.
- W2964210007 cites W2061575154 @default.
- W2964210007 cites W2065489029 @default.
- W2964210007 cites W2080529963 @default.
- W2964210007 cites W2080970633 @default.
- W2964210007 cites W2083882002 @default.
- W2964210007 cites W2087527532 @default.
- W2964210007 cites W2098337300 @default.
- W2964210007 cites W2098629748 @default.
- W2964210007 cites W2100553995 @default.
- W2964210007 cites W2101723202 @default.
- W2964210007 cites W2104107939 @default.
- W2964210007 cites W2110219362 @default.
- W2964210007 cites W2111949697 @default.
- W2964210007 cites W2112796928 @default.
- W2964210007 cites W2117593603 @default.
- W2964210007 cites W2119648923 @default.
- W2964210007 cites W2122947685 @default.
- W2964210007 cites W2125343911 @default.
- W2964210007 cites W2129065328 @default.
- W2964210007 cites W2139885493 @default.
- W2964210007 cites W2145373440 @default.
- W2964210007 cites W2149321161 @default.
- W2964210007 cites W2149462209 @default.
- W2964210007 cites W2149598089 @default.
- W2964210007 cites W2149672479 @default.
- W2964210007 cites W2152055469 @default.
- W2964210007 cites W2152094063 @default.
- W2964210007 cites W2156553998 @default.
- W2964210007 cites W2156723666 @default.
- W2964210007 cites W2162422574 @default.
- W2964210007 cites W2168893862 @default.
- W2964210007 cites W2246980366 @default.
- W2964210007 cites W2288083000 @default.
- W2964210007 cites W2344973853 @default.
- W2964210007 cites W2360967250 @default.
- W2964210007 cites W2373227884 @default.
- W2964210007 cites W2400994325 @default.
- W2964210007 cites W2402619042 @default.
- W2964210007 cites W2518136680 @default.
- W2964210007 cites W2537787699 @default.
- W2964210007 cites W2548997977 @default.
- W2964210007 cites W2619465136 @default.
- W2964210007 cites W2735974352 @default.
- W2964210007 cites W2740130372 @default.
- W2964210007 cites W2794601162 @default.
- W2964210007 cites W2890606267 @default.
- W2964210007 cites W2908354350 @default.
- W2964210007 cites W2962708851 @default.
- W2964210007 cites W2962809971 @default.
- W2964210007 cites W2963935794 @default.
- W2964210007 cites W2964322208 @default.
- W2964210007 cites W3146720657 @default.
- W2964210007 cites W4231241365 @default.
- W2964210007 cites W4235072768 @default.
- W2964210007 cites W4237506321 @default.
- W2964210007 cites W4244284331 @default.
- W2964210007 cites W4244452926 @default.
- W2964210007 cites W4244945045 @default.
- W2964210007 cites W4248606406 @default.
- W2964210007 cites W4255632703 @default.
- W2964210007 cites W4255701563 @default.
- W2964210007 cites W4256028358 @default.
- W2964210007 cites W4256377773 @default.
- W2964210007 cites W841012168 @default.
- W2964210007 doi "https://doi.org/10.1109/tse.2018.2884955" @default.
- W2964210007 hasPublicationYear "2021" @default.
- W2964210007 type Work @default.
- W2964210007 sameAs 2964210007 @default.
- W2964210007 citedByCount "46" @default.
- W2964210007 countsByYear W29642100072018 @default.
- W2964210007 countsByYear W29642100072019 @default.
- W2964210007 countsByYear W29642100072020 @default.
- W2964210007 countsByYear W29642100072021 @default.
- W2964210007 countsByYear W29642100072022 @default.