Matches in SemOpenAlex for { <https://semopenalex.org/work/W2964220104> ?p ?o ?g. }
Showing items 1 to 99 of
99
with 100 items per page.
- W2964220104 endingPage "1517" @default.
- W2964220104 startingPage "1504" @default.
- W2964220104 abstract "In this paper, the problem of joint caching and resource allocation is investigated for a network of cache-enabled unmanned aerial vehicles (UAVs) that service wireless ground users over the LTE licensed and unlicensed bands. The considered model focuses on users that can access both licensed and unlicensed bands while receiving contents from either the cache units at the UAVs directly or via content server-UAV-user links. This problem is formulated as an optimization problem, which jointly incorporates user association, spectrum allocation, and content caching. To solve this problem, a distributed algorithm based on the machine learning framework of liquid state machine (LSM) is proposed. Using the proposed LSM algorithm, the cloud can predict the users' content request distribution while having only limited information on the network's and users' states. The proposed algorithm also enables the UAVs to autonomously choose the optimal resource allocation strategies that maximize the number of users with stable queues depending on the network states. Based on the users' association and content request distributions, the optimal contents that need to be cached at UAVs and the optimal resource allocation are derived. Simulation results using real datasets show that the proposed approach yields up to 17.8% and 57.1% gains, respectively, in terms of the number of users that have stable queues compared with two baseline algorithms: Q-learning with cache and Q-learning without cache. The results also show that the LSM significantly improves the convergence time of up to 20% compared with conventional learning algorithms such as Q-learning." @default.
- W2964220104 created "2019-07-30" @default.
- W2964220104 creator A5009078493 @default.
- W2964220104 creator A5024108653 @default.
- W2964220104 creator A5072241033 @default.
- W2964220104 date "2019-03-01" @default.
- W2964220104 modified "2023-10-16" @default.
- W2964220104 title "Liquid State Machine Learning for Resource and Cache Management in LTE-U Unmanned Aerial Vehicle (UAV) Networks" @default.
- W2964220104 cites W1564088886 @default.
- W2964220104 cites W1988456768 @default.
- W2964220104 cites W2051773775 @default.
- W2964220104 cites W2109401393 @default.
- W2964220104 cites W2137152139 @default.
- W2964220104 cites W2162598825 @default.
- W2964220104 cites W2268751503 @default.
- W2964220104 cites W2343189577 @default.
- W2964220104 cites W2480650319 @default.
- W2964220104 cites W2516263363 @default.
- W2964220104 cites W2523219060 @default.
- W2964220104 cites W2528788999 @default.
- W2964220104 cites W2585618153 @default.
- W2964220104 cites W2596760110 @default.
- W2964220104 cites W2783103509 @default.
- W2964220104 cites W2783184536 @default.
- W2964220104 cites W2783729004 @default.
- W2964220104 cites W2794262854 @default.
- W2964220104 cites W2807521632 @default.
- W2964220104 cites W2962684895 @default.
- W2964220104 cites W2962886534 @default.
- W2964220104 cites W2962948373 @default.
- W2964220104 cites W2963006267 @default.
- W2964220104 cites W2963061782 @default.
- W2964220104 cites W2963576178 @default.
- W2964220104 cites W2963991174 @default.
- W2964220104 cites W2964052915 @default.
- W2964220104 cites W2964125271 @default.
- W2964220104 cites W2964316728 @default.
- W2964220104 cites W3098405735 @default.
- W2964220104 cites W3102880088 @default.
- W2964220104 cites W3103282502 @default.
- W2964220104 cites W3124635006 @default.
- W2964220104 doi "https://doi.org/10.1109/twc.2019.2891629" @default.
- W2964220104 hasPublicationYear "2019" @default.
- W2964220104 type Work @default.
- W2964220104 sameAs 2964220104 @default.
- W2964220104 citedByCount "140" @default.
- W2964220104 countsByYear W29642201042017 @default.
- W2964220104 countsByYear W29642201042018 @default.
- W2964220104 countsByYear W29642201042019 @default.
- W2964220104 countsByYear W29642201042020 @default.
- W2964220104 countsByYear W29642201042021 @default.
- W2964220104 countsByYear W29642201042022 @default.
- W2964220104 countsByYear W29642201042023 @default.
- W2964220104 crossrefType "journal-article" @default.
- W2964220104 hasAuthorship W2964220104A5009078493 @default.
- W2964220104 hasAuthorship W2964220104A5024108653 @default.
- W2964220104 hasAuthorship W2964220104A5072241033 @default.
- W2964220104 hasBestOaLocation W29642201041 @default.
- W2964220104 hasConcept C115537543 @default.
- W2964220104 hasConcept C120314980 @default.
- W2964220104 hasConcept C189783530 @default.
- W2964220104 hasConcept C2780609101 @default.
- W2964220104 hasConcept C29202148 @default.
- W2964220104 hasConcept C31258907 @default.
- W2964220104 hasConcept C38556500 @default.
- W2964220104 hasConcept C41008148 @default.
- W2964220104 hasConceptScore W2964220104C115537543 @default.
- W2964220104 hasConceptScore W2964220104C120314980 @default.
- W2964220104 hasConceptScore W2964220104C189783530 @default.
- W2964220104 hasConceptScore W2964220104C2780609101 @default.
- W2964220104 hasConceptScore W2964220104C29202148 @default.
- W2964220104 hasConceptScore W2964220104C31258907 @default.
- W2964220104 hasConceptScore W2964220104C38556500 @default.
- W2964220104 hasConceptScore W2964220104C41008148 @default.
- W2964220104 hasFunder F4320306076 @default.
- W2964220104 hasFunder F4320321001 @default.
- W2964220104 hasFunder F4320327912 @default.
- W2964220104 hasIssue "3" @default.
- W2964220104 hasLocation W29642201041 @default.
- W2964220104 hasLocation W29642201042 @default.
- W2964220104 hasOpenAccess W2964220104 @default.
- W2964220104 hasPrimaryLocation W29642201041 @default.
- W2964220104 hasRelatedWork W1483111793 @default.
- W2964220104 hasRelatedWork W1541398538 @default.
- W2964220104 hasRelatedWork W2037866546 @default.
- W2964220104 hasRelatedWork W2369795572 @default.
- W2964220104 hasRelatedWork W2372542233 @default.
- W2964220104 hasRelatedWork W2380012616 @default.
- W2964220104 hasRelatedWork W2390009364 @default.
- W2964220104 hasRelatedWork W2390128275 @default.
- W2964220104 hasRelatedWork W2957999883 @default.
- W2964220104 hasRelatedWork W3033597088 @default.
- W2964220104 hasVolume "18" @default.
- W2964220104 isParatext "false" @default.
- W2964220104 isRetracted "false" @default.
- W2964220104 magId "2964220104" @default.
- W2964220104 workType "article" @default.