Matches in SemOpenAlex for { <https://semopenalex.org/work/W2964222721> ?p ?o ?g. }
- W2964222721 endingPage "389" @default.
- W2964222721 startingPage "380" @default.
- W2964222721 abstract "When factorizing binary matrices, we often have to make a choice between using expensive combinatorial methods that retain the discrete nature of the data and using continuous methods that can be more efficient but destroy the discrete structure. Alternatively, we can first compute a continuous factorization and subsequently apply a rounding procedure to obtain a discrete representation. But what will we gain by rounding? Will this yield lower reconstruction errors? Is it easy to find a low-rank matrix that rounds to a given binary matrix? Does it matter which threshold we use for rounding? Does it matter if we allow for only non-negative factorizations? In this paper, we approach these and further questions by presenting and studying the concept of rounding rank. We show that rounding rank is related to linear classification, dimensionality reduction, and nested matrices. We also report on an extensive experimental study that compares different algorithms for finding good factorizations under the rounding rank model." @default.
- W2964222721 created "2019-07-30" @default.
- W2964222721 creator A5008120721 @default.
- W2964222721 creator A5011206838 @default.
- W2964222721 creator A5041227178 @default.
- W2964222721 date "2016-09-16" @default.
- W2964222721 modified "2023-09-23" @default.
- W2964222721 title "What You Will Gain By Rounding: Theory and Algorithms for Rounding Rank" @default.
- W2964222721 cites W1497640967 @default.
- W2964222721 cites W1535136408 @default.
- W2964222721 cites W1568698519 @default.
- W2964222721 cites W1848620603 @default.
- W2964222721 cites W1969427413 @default.
- W2964222721 cites W1971048994 @default.
- W2964222721 cites W2001505356 @default.
- W2964222721 cites W2008671796 @default.
- W2964222721 cites W2017343635 @default.
- W2964222721 cites W2022823663 @default.
- W2964222721 cites W2037757210 @default.
- W2964222721 cites W2062435795 @default.
- W2964222721 cites W2066019014 @default.
- W2964222721 cites W2074760215 @default.
- W2964222721 cites W2107710003 @default.
- W2964222721 cites W2115124828 @default.
- W2964222721 cites W2117231836 @default.
- W2964222721 cites W2123750718 @default.
- W2964222721 cites W2127822841 @default.
- W2964222721 cites W2141752622 @default.
- W2964222721 cites W2143355494 @default.
- W2964222721 cites W2154904274 @default.
- W2964222721 cites W2160342152 @default.
- W2964222721 cites W2164362010 @default.
- W2964222721 cites W2169347424 @default.
- W2964222721 cites W2296319761 @default.
- W2964222721 cites W2610857016 @default.
- W2964222721 cites W2962874548 @default.
- W2964222721 cites W2963277597 @default.
- W2964222721 cites W2979473749 @default.
- W2964222721 cites W3097609957 @default.
- W2964222721 doi "https://doi.org/10.1109/icdm.2016.147" @default.
- W2964222721 hasPublicationYear "2016" @default.
- W2964222721 type Work @default.
- W2964222721 sameAs 2964222721 @default.
- W2964222721 citedByCount "0" @default.
- W2964222721 crossrefType "proceedings-article" @default.
- W2964222721 hasAuthorship W2964222721A5008120721 @default.
- W2964222721 hasAuthorship W2964222721A5011206838 @default.
- W2964222721 hasAuthorship W2964222721A5041227178 @default.
- W2964222721 hasConcept C106487976 @default.
- W2964222721 hasConcept C111919701 @default.
- W2964222721 hasConcept C11413529 @default.
- W2964222721 hasConcept C114614502 @default.
- W2964222721 hasConcept C118615104 @default.
- W2964222721 hasConcept C136625980 @default.
- W2964222721 hasConcept C159985019 @default.
- W2964222721 hasConcept C164226766 @default.
- W2964222721 hasConcept C17744445 @default.
- W2964222721 hasConcept C187834632 @default.
- W2964222721 hasConcept C192562407 @default.
- W2964222721 hasConcept C199539241 @default.
- W2964222721 hasConcept C2776359362 @default.
- W2964222721 hasConcept C33923547 @default.
- W2964222721 hasConcept C41008148 @default.
- W2964222721 hasConcept C48372109 @default.
- W2964222721 hasConcept C61005703 @default.
- W2964222721 hasConcept C80444323 @default.
- W2964222721 hasConcept C94375191 @default.
- W2964222721 hasConcept C94625758 @default.
- W2964222721 hasConceptScore W2964222721C106487976 @default.
- W2964222721 hasConceptScore W2964222721C111919701 @default.
- W2964222721 hasConceptScore W2964222721C11413529 @default.
- W2964222721 hasConceptScore W2964222721C114614502 @default.
- W2964222721 hasConceptScore W2964222721C118615104 @default.
- W2964222721 hasConceptScore W2964222721C136625980 @default.
- W2964222721 hasConceptScore W2964222721C159985019 @default.
- W2964222721 hasConceptScore W2964222721C164226766 @default.
- W2964222721 hasConceptScore W2964222721C17744445 @default.
- W2964222721 hasConceptScore W2964222721C187834632 @default.
- W2964222721 hasConceptScore W2964222721C192562407 @default.
- W2964222721 hasConceptScore W2964222721C199539241 @default.
- W2964222721 hasConceptScore W2964222721C2776359362 @default.
- W2964222721 hasConceptScore W2964222721C33923547 @default.
- W2964222721 hasConceptScore W2964222721C41008148 @default.
- W2964222721 hasConceptScore W2964222721C48372109 @default.
- W2964222721 hasConceptScore W2964222721C61005703 @default.
- W2964222721 hasConceptScore W2964222721C80444323 @default.
- W2964222721 hasConceptScore W2964222721C94375191 @default.
- W2964222721 hasConceptScore W2964222721C94625758 @default.
- W2964222721 hasLocation W29642227211 @default.
- W2964222721 hasOpenAccess W2964222721 @default.
- W2964222721 hasPrimaryLocation W29642227211 @default.
- W2964222721 hasRelatedWork W1865760297 @default.
- W2964222721 hasRelatedWork W2007040503 @default.
- W2964222721 hasRelatedWork W2026150508 @default.
- W2964222721 hasRelatedWork W2075640223 @default.
- W2964222721 hasRelatedWork W2099561821 @default.
- W2964222721 hasRelatedWork W2099611016 @default.
- W2964222721 hasRelatedWork W2156792823 @default.