Matches in SemOpenAlex for { <https://semopenalex.org/work/W2964227910> ?p ?o ?g. }
Showing items 1 to 76 of
76
with 100 items per page.
- W2964227910 endingPage "72" @default.
- W2964227910 startingPage "53" @default.
- W2964227910 abstract "Let <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper R> <mml:semantics> <mml:mi>R</mml:mi> <mml:annotation encoding=application/x-tex>R</mml:annotation> </mml:semantics> </mml:math> </inline-formula> be a formal power series ring over a field, with maximal ideal <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=German m> <mml:semantics> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi mathvariant=fraktur>m</mml:mi> </mml:mrow> <mml:annotation encoding=application/x-tex>mathfrak {m}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, and let <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper I> <mml:semantics> <mml:mi>I</mml:mi> <mml:annotation encoding=application/x-tex>I</mml:annotation> </mml:semantics> </mml:math> </inline-formula> be an ideal of <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper R> <mml:semantics> <mml:mi>R</mml:mi> <mml:annotation encoding=application/x-tex>R</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. We study iterated socles of <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper I> <mml:semantics> <mml:mi>I</mml:mi> <mml:annotation encoding=application/x-tex>I</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, that is, ideals of the form <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper I colon Subscript upper R Baseline German m Superscript s> <mml:semantics> <mml:mrow> <mml:mi>I</mml:mi> <mml:msub> <mml:mo>:</mml:mo> <mml:mi>R</mml:mi> </mml:msub> <mml:msup> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi mathvariant=fraktur>m</mml:mi> </mml:mrow> </mml:mrow> <mml:mi>s</mml:mi> </mml:msup> </mml:mrow> <mml:annotation encoding=application/x-tex>I :_R {mathfrak m}^s</mml:annotation> </mml:semantics> </mml:math> </inline-formula> for positive integers <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=s> <mml:semantics> <mml:mi>s</mml:mi> <mml:annotation encoding=application/x-tex>s</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. We are interested in iterated socles in connection with the notion of integral dependence of ideals. In this article we show that iterated socles are integral over <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper I> <mml:semantics> <mml:mi>I</mml:mi> <mml:annotation encoding=application/x-tex>I</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, with reduction number at most one, provided <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=s less-than-or-equal-to o left-parenthesis upper I 1 left-parenthesis phi Subscript d Baseline right-parenthesis right-parenthesis minus 1> <mml:semantics> <mml:mrow> <mml:mi>s</mml:mi> <mml:mo>≤<!-- ≤ --></mml:mo> <mml:mtext>o</mml:mtext> <mml:mo stretchy=false>(</mml:mo> <mml:msub> <mml:mi>I</mml:mi> <mml:mn>1</mml:mn> </mml:msub> <mml:mo stretchy=false>(</mml:mo> <mml:msub> <mml:mi>φ<!-- φ --></mml:mi> <mml:mi>d</mml:mi> </mml:msub> <mml:mo stretchy=false>)</mml:mo> <mml:mo stretchy=false>)</mml:mo> <mml:mo>−<!-- − --></mml:mo> <mml:mn>1</mml:mn> </mml:mrow> <mml:annotation encoding=application/x-tex>s leq text {o}(I_1(varphi _d))-1</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, where <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=o left-parenthesis upper I 1 left-parenthesis phi Subscript d Baseline right-parenthesis right-parenthesis> <mml:semantics> <mml:mrow> <mml:mtext>o</mml:mtext> <mml:mo stretchy=false>(</mml:mo> <mml:msub> <mml:mi>I</mml:mi> <mml:mn>1</mml:mn> </mml:msub> <mml:mo stretchy=false>(</mml:mo> <mml:msub> <mml:mi>φ<!-- φ --></mml:mi> <mml:mi>d</mml:mi> </mml:msub> <mml:mo stretchy=false>)</mml:mo> <mml:mo stretchy=false>)</mml:mo> </mml:mrow> <mml:annotation encoding=application/x-tex>text {o}(I_1(varphi _d))</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is the order of the ideal of entries of the last map in a minimal free <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper R> <mml:semantics> <mml:mi>R</mml:mi> <mml:annotation encoding=application/x-tex>R</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-resolution of <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper R slash upper I> <mml:semantics> <mml:mrow> <mml:mi>R</mml:mi> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mo>/</mml:mo> </mml:mrow> <mml:mi>I</mml:mi> </mml:mrow> <mml:annotation encoding=application/x-tex>R/I</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. In characteristic zero, we also provide formulas for the generators of iterated socles whenever <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=s less-than-or-equal-to o left-parenthesis upper I 1 left-parenthesis phi Subscript d Baseline right-parenthesis right-parenthesis> <mml:semantics> <mml:mrow> <mml:mi>s</mml:mi> <mml:mo>≤<!-- ≤ --></mml:mo> <mml:mtext>o</mml:mtext> <mml:mo stretchy=false>(</mml:mo> <mml:msub> <mml:mi>I</mml:mi> <mml:mn>1</mml:mn> </mml:msub> <mml:mo stretchy=false>(</mml:mo> <mml:msub> <mml:mi>φ<!-- φ --></mml:mi> <mml:mi>d</mml:mi> </mml:msub> <mml:mo stretchy=false>)</mml:mo> <mml:mo stretchy=false>)</mml:mo> </mml:mrow> <mml:annotation encoding=application/x-tex>sleq text {o}(I_1(varphi _d))</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. This result generalizes previous work of Herzog, who gave formulas for the socle generators of any homogeneous ideal <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper I> <mml:semantics> <mml:mi>I</mml:mi> <mml:annotation encoding=application/x-tex>I</mml:annotation> </mml:semantics> </mml:math> </inline-formula> in terms of Jacobian determinants of the entries of the matrices in a minimal homogeneous free <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper R> <mml:semantics> <mml:mi>R</mml:mi> <mml:annotation encoding=application/x-tex>R</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-resolution of <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper R slash upper I> <mml:semantics> <mml:mrow> <mml:mi>R</mml:mi> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mo>/</mml:mo> </mml:mrow> <mml:mi>I</mml:mi> </mml:mrow> <mml:annotation encoding=application/x-tex>R/I</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. Applications are given to iterated socles of determinantal ideals with generic height. In particular, we give surprisingly simple formulas for iterated socles of height two ideals in a power series ring in two variables. The generators of these socles are suitable determinants obtained from the Hilbert-Burch matrix." @default.
- W2964227910 created "2019-07-30" @default.
- W2964227910 creator A5021539506 @default.
- W2964227910 creator A5026980224 @default.
- W2964227910 creator A5042899101 @default.
- W2964227910 creator A5057295462 @default.
- W2964227910 creator A5088046865 @default.
- W2964227910 date "2017-09-19" @default.
- W2964227910 modified "2023-10-18" @default.
- W2964227910 title "Iterated socles and integral dependence in regular rings" @default.
- W2964227910 cites W1981176861 @default.
- W2964227910 cites W1981253610 @default.
- W2964227910 cites W1997540416 @default.
- W2964227910 cites W2008078978 @default.
- W2964227910 cites W2013216511 @default.
- W2964227910 cites W2035133631 @default.
- W2964227910 cites W2040753804 @default.
- W2964227910 cites W2044139740 @default.
- W2964227910 cites W2051534600 @default.
- W2964227910 cites W2068716775 @default.
- W2964227910 cites W2083760033 @default.
- W2964227910 cites W2127647384 @default.
- W2964227910 cites W2155103827 @default.
- W2964227910 cites W2155545833 @default.
- W2964227910 cites W2313163255 @default.
- W2964227910 cites W2949526956 @default.
- W2964227910 cites W4211071152 @default.
- W2964227910 doi "https://doi.org/10.1090/tran/6926" @default.
- W2964227910 hasPublicationYear "2017" @default.
- W2964227910 type Work @default.
- W2964227910 sameAs 2964227910 @default.
- W2964227910 citedByCount "5" @default.
- W2964227910 countsByYear W29642279102019 @default.
- W2964227910 countsByYear W29642279102020 @default.
- W2964227910 countsByYear W29642279102021 @default.
- W2964227910 crossrefType "journal-article" @default.
- W2964227910 hasAuthorship W2964227910A5021539506 @default.
- W2964227910 hasAuthorship W2964227910A5026980224 @default.
- W2964227910 hasAuthorship W2964227910A5042899101 @default.
- W2964227910 hasAuthorship W2964227910A5057295462 @default.
- W2964227910 hasAuthorship W2964227910A5088046865 @default.
- W2964227910 hasBestOaLocation W29642279101 @default.
- W2964227910 hasConcept C11413529 @default.
- W2964227910 hasConcept C154945302 @default.
- W2964227910 hasConcept C2776321320 @default.
- W2964227910 hasConcept C33923547 @default.
- W2964227910 hasConcept C41008148 @default.
- W2964227910 hasConceptScore W2964227910C11413529 @default.
- W2964227910 hasConceptScore W2964227910C154945302 @default.
- W2964227910 hasConceptScore W2964227910C2776321320 @default.
- W2964227910 hasConceptScore W2964227910C33923547 @default.
- W2964227910 hasConceptScore W2964227910C41008148 @default.
- W2964227910 hasFunder F4320334764 @default.
- W2964227910 hasIssue "1" @default.
- W2964227910 hasLocation W29642279101 @default.
- W2964227910 hasLocation W29642279102 @default.
- W2964227910 hasLocation W29642279103 @default.
- W2964227910 hasOpenAccess W2964227910 @default.
- W2964227910 hasPrimaryLocation W29642279101 @default.
- W2964227910 hasRelatedWork W1490908374 @default.
- W2964227910 hasRelatedWork W151193258 @default.
- W2964227910 hasRelatedWork W1529400504 @default.
- W2964227910 hasRelatedWork W1607472309 @default.
- W2964227910 hasRelatedWork W1871911958 @default.
- W2964227910 hasRelatedWork W1892467659 @default.
- W2964227910 hasRelatedWork W2808586768 @default.
- W2964227910 hasRelatedWork W2998403542 @default.
- W2964227910 hasRelatedWork W3107474891 @default.
- W2964227910 hasRelatedWork W38394648 @default.
- W2964227910 hasVolume "370" @default.
- W2964227910 isParatext "false" @default.
- W2964227910 isRetracted "false" @default.
- W2964227910 magId "2964227910" @default.
- W2964227910 workType "article" @default.