Matches in SemOpenAlex for { <https://semopenalex.org/work/W2964230903> ?p ?o ?g. }
Showing items 1 to 75 of
75
with 100 items per page.
- W2964230903 startingPage "15" @default.
- W2964230903 abstract "In their seminal work, Mustafa and Ray [Nabil H. Mustafa and Saurabh Ray, 2010] showed that a wide class of geometric set cover (SC) problems admit a PTAS via local search - this is one of the most general approaches known for such problems. Their result applies if a naturally defined exchange for two feasible solutions is planar and is based on subdividing this graph via a planar separator theorem due to Frederickson [Greg N. Frederickson, 1987]. Obtaining similar results for the related maximum coverage problem (MC) seems non-trivial due to the hard cardinality constraint. In fact, while Badanidiyuru, Kleinberg, and Lee [Ashwinkumar Badanidiyuru et al., 2012] have shown (via a different analysis) that local search yields a PTAS for two-dimensional real halfspaces, they only conjectured that the same holds true for dimension three. Interestingly, at this point it was already known that local search provides a PTAS for the corresponding set cover case and this followed directly from the approach of Mustafa and Ray.In this work we provide a way to address the above-mentioned issue. First, we propose a color-balanced version of the planar separator theorem. The resulting subdivision approximates locally in each part the global distribution of the colors. Second, we show how this roughly balanced subdivision can be employed in a more careful analysis to strictly obey the hard cardinality constraint. More specifically, we obtain a PTAS for any planarizable instance of MC and thus essentially for all cases where the corresponding SC instance can be tackled via the approach of Mustafa and Ray. As a corollary, we confirm the conjecture of Badanidiyuru, Kleinberg, and Lee [Ashwinkumar Badanidiyuru et al., 2012] regarding real halfspaces in dimension three. We feel that our ideas could also be helpful in other geometric settings involving a cardinality constraint." @default.
- W2964230903 created "2019-07-30" @default.
- W2964230903 creator A5018484255 @default.
- W2964230903 creator A5020649644 @default.
- W2964230903 creator A5021041638 @default.
- W2964230903 creator A5052812610 @default.
- W2964230903 date "2018-08-01" @default.
- W2964230903 modified "2023-09-27" @default.
- W2964230903 title "Approximation Schemes for Geometric Coverage Problems" @default.
- W2964230903 doi "https://doi.org/10.4230/lipics.esa.2018.17" @default.
- W2964230903 hasPublicationYear "2018" @default.
- W2964230903 type Work @default.
- W2964230903 sameAs 2964230903 @default.
- W2964230903 citedByCount "0" @default.
- W2964230903 crossrefType "proceedings-article" @default.
- W2964230903 hasAuthorship W2964230903A5018484255 @default.
- W2964230903 hasAuthorship W2964230903A5020649644 @default.
- W2964230903 hasAuthorship W2964230903A5021041638 @default.
- W2964230903 hasAuthorship W2964230903A5052812610 @default.
- W2964230903 hasConcept C101837359 @default.
- W2964230903 hasConcept C114614502 @default.
- W2964230903 hasConcept C118615104 @default.
- W2964230903 hasConcept C124101348 @default.
- W2964230903 hasConcept C127413603 @default.
- W2964230903 hasConcept C132525143 @default.
- W2964230903 hasConcept C143392562 @default.
- W2964230903 hasConcept C166957645 @default.
- W2964230903 hasConcept C2780428219 @default.
- W2964230903 hasConcept C33923547 @default.
- W2964230903 hasConcept C41008148 @default.
- W2964230903 hasConcept C78519656 @default.
- W2964230903 hasConcept C87117476 @default.
- W2964230903 hasConcept C95457728 @default.
- W2964230903 hasConceptScore W2964230903C101837359 @default.
- W2964230903 hasConceptScore W2964230903C114614502 @default.
- W2964230903 hasConceptScore W2964230903C118615104 @default.
- W2964230903 hasConceptScore W2964230903C124101348 @default.
- W2964230903 hasConceptScore W2964230903C127413603 @default.
- W2964230903 hasConceptScore W2964230903C132525143 @default.
- W2964230903 hasConceptScore W2964230903C143392562 @default.
- W2964230903 hasConceptScore W2964230903C166957645 @default.
- W2964230903 hasConceptScore W2964230903C2780428219 @default.
- W2964230903 hasConceptScore W2964230903C33923547 @default.
- W2964230903 hasConceptScore W2964230903C41008148 @default.
- W2964230903 hasConceptScore W2964230903C78519656 @default.
- W2964230903 hasConceptScore W2964230903C87117476 @default.
- W2964230903 hasConceptScore W2964230903C95457728 @default.
- W2964230903 hasLocation W29642309031 @default.
- W2964230903 hasOpenAccess W2964230903 @default.
- W2964230903 hasPrimaryLocation W29642309031 @default.
- W2964230903 hasRelatedWork W1989281842 @default.
- W2964230903 hasRelatedWork W2092838574 @default.
- W2964230903 hasRelatedWork W2112227729 @default.
- W2964230903 hasRelatedWork W2169416073 @default.
- W2964230903 hasRelatedWork W2183312547 @default.
- W2964230903 hasRelatedWork W2194204811 @default.
- W2964230903 hasRelatedWork W2497579171 @default.
- W2964230903 hasRelatedWork W2544343122 @default.
- W2964230903 hasRelatedWork W2569746101 @default.
- W2964230903 hasRelatedWork W2572017251 @default.
- W2964230903 hasRelatedWork W2726395032 @default.
- W2964230903 hasRelatedWork W2798921486 @default.
- W2964230903 hasRelatedWork W2950179857 @default.
- W2964230903 hasRelatedWork W2950465163 @default.
- W2964230903 hasRelatedWork W2981213705 @default.
- W2964230903 hasRelatedWork W3037027851 @default.
- W2964230903 hasRelatedWork W3041896098 @default.
- W2964230903 hasRelatedWork W34719172 @default.
- W2964230903 hasRelatedWork W1534270800 @default.
- W2964230903 hasRelatedWork W2316400952 @default.
- W2964230903 isParatext "false" @default.
- W2964230903 isRetracted "false" @default.
- W2964230903 magId "2964230903" @default.
- W2964230903 workType "article" @default.