Matches in SemOpenAlex for { <https://semopenalex.org/work/W2964231206> ?p ?o ?g. }
- W2964231206 endingPage "921" @default.
- W2964231206 startingPage "921" @default.
- W2964231206 abstract "Since their inception in the 1930–1960s, the research disciplines of computational imaging and machine learning have followed parallel tracks and, during the last two decades, experienced explosive growth drawing on similar progress in mathematical optimization and computing hardware. While these developments have always been to the benefit of image interpretation and machine vision, only recently has it become evident that machine learning architectures, and deep neural networks in particular, can be effective for computational image formation, aside from interpretation. The deep learning approach has proven to be especially attractive when the measurement is noisy and the measurement operator ill posed or uncertain. Examples reviewed here are: super-resolution; lensless retrieval of phase and complex amplitude from intensity; photon-limited scenes, including ghost imaging; and imaging through scatter. In this paper, we cast these works in a common framework. We relate the deep-learning-inspired solutions to the original computational imaging formulation and use the relationship to derive design insights, principles, and caveats of more general applicability. We also explore how the machine learning process is aided by the physics of imaging when ill posedness and uncertainties become particularly severe. It is hoped that the present unifying exposition will stimulate further progress in this promising field of research." @default.
- W2964231206 created "2019-07-30" @default.
- W2964231206 creator A5022751168 @default.
- W2964231206 creator A5034049110 @default.
- W2964231206 creator A5084018850 @default.
- W2964231206 date "2019-07-25" @default.
- W2964231206 modified "2023-10-17" @default.
- W2964231206 title "On the use of deep learning for computational imaging" @default.
- W2964231206 cites W102553210 @default.
- W2964231206 cites W1498436455 @default.
- W2964231206 cites W1532247067 @default.
- W2964231206 cites W1577352482 @default.
- W2964231206 cites W1626513324 @default.
- W2964231206 cites W1885185971 @default.
- W2964231206 cites W1930341357 @default.
- W2964231206 cites W1964357740 @default.
- W2964231206 cites W1967498211 @default.
- W2964231206 cites W1967861112 @default.
- W2964231206 cites W1968961011 @default.
- W2964231206 cites W1970850819 @default.
- W2964231206 cites W1971500547 @default.
- W2964231206 cites W1972822190 @default.
- W2964231206 cites W1974511160 @default.
- W2964231206 cites W1975031941 @default.
- W2964231206 cites W1982460509 @default.
- W2964231206 cites W1984361647 @default.
- W2964231206 cites W1984807984 @default.
- W2964231206 cites W1985406021 @default.
- W2964231206 cites W1985658808 @default.
- W2964231206 cites W1986579450 @default.
- W2964231206 cites W1986701690 @default.
- W2964231206 cites W1992858116 @default.
- W2964231206 cites W1995413508 @default.
- W2964231206 cites W1999760255 @default.
- W2964231206 cites W2000443157 @default.
- W2964231206 cites W2000820559 @default.
- W2964231206 cites W2001824401 @default.
- W2964231206 cites W2002128730 @default.
- W2964231206 cites W2005097301 @default.
- W2964231206 cites W2006948821 @default.
- W2964231206 cites W2007593159 @default.
- W2964231206 cites W2012560392 @default.
- W2964231206 cites W2013125633 @default.
- W2964231206 cites W2015526235 @default.
- W2964231206 cites W2016322000 @default.
- W2964231206 cites W2018044251 @default.
- W2964231206 cites W2019094671 @default.
- W2964231206 cites W2019236124 @default.
- W2964231206 cites W2020111712 @default.
- W2964231206 cites W2020556902 @default.
- W2964231206 cites W2021535288 @default.
- W2964231206 cites W2025263014 @default.
- W2964231206 cites W2028349405 @default.
- W2964231206 cites W2030224529 @default.
- W2964231206 cites W2030279482 @default.
- W2964231206 cites W2031312855 @default.
- W2964231206 cites W2032550842 @default.
- W2964231206 cites W2037475910 @default.
- W2964231206 cites W2037884629 @default.
- W2964231206 cites W2038740356 @default.
- W2964231206 cites W2040028408 @default.
- W2964231206 cites W2040870580 @default.
- W2964231206 cites W2044651951 @default.
- W2964231206 cites W2047602908 @default.
- W2964231206 cites W2048269000 @default.
- W2964231206 cites W2050565643 @default.
- W2964231206 cites W2050611421 @default.
- W2964231206 cites W2052552885 @default.
- W2964231206 cites W2054455698 @default.
- W2964231206 cites W2056003475 @default.
- W2964231206 cites W2056370875 @default.
- W2964231206 cites W2056997464 @default.
- W2964231206 cites W2058532290 @default.
- W2964231206 cites W2059971553 @default.
- W2964231206 cites W2061659108 @default.
- W2964231206 cites W2062315245 @default.
- W2964231206 cites W2065450730 @default.
- W2964231206 cites W2065847304 @default.
- W2964231206 cites W2067733907 @default.
- W2964231206 cites W2070309911 @default.
- W2964231206 cites W2072538004 @default.
- W2964231206 cites W2073731654 @default.
- W2964231206 cites W2075119852 @default.
- W2964231206 cites W2075624417 @default.
- W2964231206 cites W2076063813 @default.
- W2964231206 cites W2076541487 @default.
- W2964231206 cites W2079319869 @default.
- W2964231206 cites W2082029531 @default.
- W2964231206 cites W2087957196 @default.
- W2964231206 cites W2088254198 @default.
- W2964231206 cites W2090475034 @default.
- W2964231206 cites W2092147519 @default.
- W2964231206 cites W2096450582 @default.
- W2964231206 cites W2098681947 @default.
- W2964231206 cites W2100556411 @default.
- W2964231206 cites W2101336703 @default.
- W2964231206 cites W2102670198 @default.
- W2964231206 cites W2103559027 @default.