Matches in SemOpenAlex for { <https://semopenalex.org/work/W2964242896> ?p ?o ?g. }
Showing items 1 to 96 of
96
with 100 items per page.
- W2964242896 abstract "Mass segmentation provides effective morphological features which are important for mass diagnosis. In this work, we propose a novel end-to-end network for mammographic mass segmentation which employs a fully convolutional network (FCN) to model a potential function, followed by a conditional random field (CRF) to perform structured learning. Because the mass distribution varies greatly with pixel position, the FCN is combined with a position priori. Further, we employ adversarial training to eliminate over-fitting due to the small sizes of mammogram datasets. Multi-scale FCN is employed to improve the segmentation performance. Experimental results on two public datasets, IN breast and DDSM-BCRP, demonstrate that our end-to-end network achieves better performance than state-of-the-art approaches." @default.
- W2964242896 created "2019-07-30" @default.
- W2964242896 creator A5002364141 @default.
- W2964242896 creator A5031854562 @default.
- W2964242896 creator A5041383246 @default.
- W2964242896 creator A5060817282 @default.
- W2964242896 creator A5084618257 @default.
- W2964242896 date "2018-04-01" @default.
- W2964242896 modified "2023-09-30" @default.
- W2964242896 title "Adversarial deep structured nets for mass segmentation from mammograms" @default.
- W2964242896 cites W1500230509 @default.
- W2964242896 cites W1546431092 @default.
- W2964242896 cites W1654698919 @default.
- W2964242896 cites W1903029394 @default.
- W2964242896 cites W2116288467 @default.
- W2964242896 cites W2116877738 @default.
- W2964242896 cites W2124592697 @default.
- W2964242896 cites W2131807858 @default.
- W2964242896 cites W2294923432 @default.
- W2964242896 cites W2524594445 @default.
- W2964242896 cites W2738232076 @default.
- W2964242896 cites W2964275459 @default.
- W2964242896 cites W304373761 @default.
- W2964242896 cites W41027960 @default.
- W2964242896 doi "https://doi.org/10.1109/isbi.2018.8363704" @default.
- W2964242896 hasPublicationYear "2018" @default.
- W2964242896 type Work @default.
- W2964242896 sameAs 2964242896 @default.
- W2964242896 citedByCount "96" @default.
- W2964242896 countsByYear W29642428962018 @default.
- W2964242896 countsByYear W29642428962019 @default.
- W2964242896 countsByYear W29642428962020 @default.
- W2964242896 countsByYear W29642428962021 @default.
- W2964242896 countsByYear W29642428962022 @default.
- W2964242896 countsByYear W29642428962023 @default.
- W2964242896 crossrefType "proceedings-article" @default.
- W2964242896 hasAuthorship W2964242896A5002364141 @default.
- W2964242896 hasAuthorship W2964242896A5031854562 @default.
- W2964242896 hasAuthorship W2964242896A5041383246 @default.
- W2964242896 hasAuthorship W2964242896A5060817282 @default.
- W2964242896 hasAuthorship W2964242896A5084618257 @default.
- W2964242896 hasBestOaLocation W29642428962 @default.
- W2964242896 hasConcept C10138342 @default.
- W2964242896 hasConcept C108583219 @default.
- W2964242896 hasConcept C111472728 @default.
- W2964242896 hasConcept C119857082 @default.
- W2964242896 hasConcept C124504099 @default.
- W2964242896 hasConcept C138885662 @default.
- W2964242896 hasConcept C14036430 @default.
- W2964242896 hasConcept C152565575 @default.
- W2964242896 hasConcept C153180895 @default.
- W2964242896 hasConcept C154945302 @default.
- W2964242896 hasConcept C160633673 @default.
- W2964242896 hasConcept C162324750 @default.
- W2964242896 hasConcept C198082294 @default.
- W2964242896 hasConcept C41008148 @default.
- W2964242896 hasConcept C75553542 @default.
- W2964242896 hasConcept C78458016 @default.
- W2964242896 hasConcept C86803240 @default.
- W2964242896 hasConcept C89600930 @default.
- W2964242896 hasConceptScore W2964242896C10138342 @default.
- W2964242896 hasConceptScore W2964242896C108583219 @default.
- W2964242896 hasConceptScore W2964242896C111472728 @default.
- W2964242896 hasConceptScore W2964242896C119857082 @default.
- W2964242896 hasConceptScore W2964242896C124504099 @default.
- W2964242896 hasConceptScore W2964242896C138885662 @default.
- W2964242896 hasConceptScore W2964242896C14036430 @default.
- W2964242896 hasConceptScore W2964242896C152565575 @default.
- W2964242896 hasConceptScore W2964242896C153180895 @default.
- W2964242896 hasConceptScore W2964242896C154945302 @default.
- W2964242896 hasConceptScore W2964242896C160633673 @default.
- W2964242896 hasConceptScore W2964242896C162324750 @default.
- W2964242896 hasConceptScore W2964242896C198082294 @default.
- W2964242896 hasConceptScore W2964242896C41008148 @default.
- W2964242896 hasConceptScore W2964242896C75553542 @default.
- W2964242896 hasConceptScore W2964242896C78458016 @default.
- W2964242896 hasConceptScore W2964242896C86803240 @default.
- W2964242896 hasConceptScore W2964242896C89600930 @default.
- W2964242896 hasLocation W29642428961 @default.
- W2964242896 hasLocation W29642428962 @default.
- W2964242896 hasOpenAccess W2964242896 @default.
- W2964242896 hasPrimaryLocation W29642428961 @default.
- W2964242896 hasRelatedWork W2546871836 @default.
- W2964242896 hasRelatedWork W2790662084 @default.
- W2964242896 hasRelatedWork W2960184797 @default.
- W2964242896 hasRelatedWork W4223943233 @default.
- W2964242896 hasRelatedWork W4285827401 @default.
- W2964242896 hasRelatedWork W4312200629 @default.
- W2964242896 hasRelatedWork W4360585206 @default.
- W2964242896 hasRelatedWork W4364306694 @default.
- W2964242896 hasRelatedWork W4380075502 @default.
- W2964242896 hasRelatedWork W4380086463 @default.
- W2964242896 isParatext "false" @default.
- W2964242896 isRetracted "false" @default.
- W2964242896 magId "2964242896" @default.
- W2964242896 workType "article" @default.