Matches in SemOpenAlex for { <https://semopenalex.org/work/W2964252316> ?p ?o ?g. }
Showing items 1 to 92 of
92
with 100 items per page.
- W2964252316 endingPage "2957" @default.
- W2964252316 startingPage "2943" @default.
- W2964252316 abstract "Age synthesis is a challenging task due to the complicated and non-linear transformation in the human aging process. Aging information is usually reflected in local facial parts, such as wrinkles at the eye corners. However, these local facial parts contribute less in previous GAN-based methods for age synthesis. To address this issue, we propose a wavelet-domain global and local consistent age generative adversarial network (WaveletGLCA-GAN), in which one global specific network and three local specific networks are integrated together to capture both global topology information and local texture details of human faces. Different from the most existing methods that modeling age synthesis in image domain, we adopt wavelet transform to depict the textual information in frequency domain. Moreover, five types of losses are adopted: 1) adversarial loss aims to generate realistic wavelets; 2) identity preserving loss aims to better preserve identity information; 3) age preserving loss aims to enhance the accuracy of age synthesis; 4) pixel-wise loss aims to preserve the background information of the input face; and 5) the total variation regularization aims to remove ghosting artifacts. Our method is evaluated on three face aging datasets, including CACD2000, Morph, and FG-NET. Qualitative and quantitative experiments show the superiority of the proposed method over other state-of-the-arts." @default.
- W2964252316 created "2019-07-30" @default.
- W2964252316 creator A5032038866 @default.
- W2964252316 creator A5055151822 @default.
- W2964252316 creator A5055505703 @default.
- W2964252316 creator A5074473139 @default.
- W2964252316 date "2019-11-01" @default.
- W2964252316 modified "2023-10-14" @default.
- W2964252316 title "Global and Local Consistent Wavelet-Domain Age Synthesis" @default.
- W2964252316 cites W1772300941 @default.
- W2964252316 cites W1978370894 @default.
- W2964252316 cites W2014102203 @default.
- W2964252316 cites W2039140324 @default.
- W2964252316 cites W2058809273 @default.
- W2964252316 cites W2067425370 @default.
- W2964252316 cites W2108039655 @default.
- W2964252316 cites W2118664399 @default.
- W2964252316 cites W2123497994 @default.
- W2964252316 cites W2134113392 @default.
- W2964252316 cites W2152679347 @default.
- W2964252316 cites W2413901322 @default.
- W2964252316 cites W2473439532 @default.
- W2964252316 cites W2510725918 @default.
- W2964252316 cites W2515770085 @default.
- W2964252316 cites W2592232824 @default.
- W2964252316 cites W2604117447 @default.
- W2964252316 cites W2798575809 @default.
- W2964252316 cites W2798600195 @default.
- W2964252316 cites W2854206375 @default.
- W2964252316 cites W2962757337 @default.
- W2964252316 cites W2962793481 @default.
- W2964252316 cites W2963391470 @default.
- W2964252316 cites W2963460857 @default.
- W2964252316 cites W2963709863 @default.
- W2964252316 cites W2963767194 @default.
- W2964252316 cites W2964295764 @default.
- W2964252316 cites W3101998545 @default.
- W2964252316 cites W3125817857 @default.
- W2964252316 doi "https://doi.org/10.1109/tifs.2019.2907973" @default.
- W2964252316 hasPublicationYear "2019" @default.
- W2964252316 type Work @default.
- W2964252316 sameAs 2964252316 @default.
- W2964252316 citedByCount "35" @default.
- W2964252316 countsByYear W29642523162019 @default.
- W2964252316 countsByYear W29642523162020 @default.
- W2964252316 countsByYear W29642523162021 @default.
- W2964252316 countsByYear W29642523162022 @default.
- W2964252316 countsByYear W29642523162023 @default.
- W2964252316 crossrefType "journal-article" @default.
- W2964252316 hasAuthorship W2964252316A5032038866 @default.
- W2964252316 hasAuthorship W2964252316A5055151822 @default.
- W2964252316 hasAuthorship W2964252316A5055505703 @default.
- W2964252316 hasAuthorship W2964252316A5074473139 @default.
- W2964252316 hasBestOaLocation W29642523162 @default.
- W2964252316 hasConcept C115961682 @default.
- W2964252316 hasConcept C11727466 @default.
- W2964252316 hasConcept C153180895 @default.
- W2964252316 hasConcept C154945302 @default.
- W2964252316 hasConcept C31972630 @default.
- W2964252316 hasConcept C41008148 @default.
- W2964252316 hasConcept C47432892 @default.
- W2964252316 hasConceptScore W2964252316C115961682 @default.
- W2964252316 hasConceptScore W2964252316C11727466 @default.
- W2964252316 hasConceptScore W2964252316C153180895 @default.
- W2964252316 hasConceptScore W2964252316C154945302 @default.
- W2964252316 hasConceptScore W2964252316C31972630 @default.
- W2964252316 hasConceptScore W2964252316C41008148 @default.
- W2964252316 hasConceptScore W2964252316C47432892 @default.
- W2964252316 hasFunder F4320321001 @default.
- W2964252316 hasFunder F4320322919 @default.
- W2964252316 hasIssue "11" @default.
- W2964252316 hasLocation W29642523161 @default.
- W2964252316 hasLocation W29642523162 @default.
- W2964252316 hasOpenAccess W2964252316 @default.
- W2964252316 hasPrimaryLocation W29642523161 @default.
- W2964252316 hasRelatedWork W1891287906 @default.
- W2964252316 hasRelatedWork W1969923398 @default.
- W2964252316 hasRelatedWork W2036807459 @default.
- W2964252316 hasRelatedWork W2135359786 @default.
- W2964252316 hasRelatedWork W2166024367 @default.
- W2964252316 hasRelatedWork W2755342338 @default.
- W2964252316 hasRelatedWork W2772917594 @default.
- W2964252316 hasRelatedWork W2775347418 @default.
- W2964252316 hasRelatedWork W3116076068 @default.
- W2964252316 hasRelatedWork W4385232115 @default.
- W2964252316 hasVolume "14" @default.
- W2964252316 isParatext "false" @default.
- W2964252316 isRetracted "false" @default.
- W2964252316 magId "2964252316" @default.
- W2964252316 workType "article" @default.