Matches in SemOpenAlex for { <https://semopenalex.org/work/W2964254172> ?p ?o ?g. }
- W2964254172 endingPage "1682" @default.
- W2964254172 startingPage "1675" @default.
- W2964254172 abstract "We consider the problem of approximating a signal P with another signal F consisting of a few piecewise constant segments. This problem arises naturally in applications including databases (e.g., histogram construction), speech recognition, computational biology (e.g., denoising aCGH data) and many more. Specifically, let P = (P1, P2,..., Pn), Pi ∈ R for all i, be a signal and let C be a constant. Our goal is to find a function F: [n] → R which optimizes the following objective function:[EQUATION]The above optimization problem reduces to solving the following recurrence, which can be done using dynamic programming in O(n2) time:[EQUATION]This recurrence arises naturally in several applications where one wants to approximate a given signal P with a signal F which ideally consists of few piecewise constant segments. Such applications include histogram construction in databases, determining DNA copy numbers in cancer cells from micro-array data, speech recognition, data mining and many others.In this work we present two new techniques for optimizing dynamic programming that can handle cost functions not treated by other standard methods. The basis of our first algorithm is the definition of a constant-shifted variant of the objective function that can be efficiently approximated using state of the art methods for range searching. Our technique approximates the optimal value of our objective function within additive e error and runs in O(n4/3+δ log (U/e)) time, where δ is an arbitrarily small positive constant and U = max{√C, (|Pi|)i=1,..., n}. The second algorithm we provide solves a similar recurrence that's within a multiplicative factor of (1+e) and runs in O(n log n/e). The new technique introduced by our algorithm is the decomposition of the initial problem into a small (logarithmic) number of Monge optimization subproblems which we can speed up using existing techniques." @default.
- W2964254172 created "2019-07-30" @default.
- W2964254172 creator A5010457003 @default.
- W2964254172 creator A5015009174 @default.
- W2964254172 creator A5051953313 @default.
- W2964254172 creator A5069421706 @default.
- W2964254172 date "2011-01-23" @default.
- W2964254172 modified "2023-09-23" @default.
- W2964254172 title "Approximate dynamic programming using halfspace queries and multiscale Monge decomposition" @default.
- W2964254172 cites W1559899545 @default.
- W2964254172 cites W1822348499 @default.
- W2964254172 cites W1855901833 @default.
- W2964254172 cites W1964482959 @default.
- W2964254172 cites W1987042978 @default.
- W2964254172 cites W2005658417 @default.
- W2964254172 cites W2009319645 @default.
- W2964254172 cites W2014497078 @default.
- W2964254172 cites W2016871180 @default.
- W2964254172 cites W2026763406 @default.
- W2964254172 cites W2033751470 @default.
- W2964254172 cites W2055257826 @default.
- W2964254172 cites W2057058417 @default.
- W2964254172 cites W2058432138 @default.
- W2964254172 cites W2068373264 @default.
- W2964254172 cites W2075604124 @default.
- W2964254172 cites W2098432798 @default.
- W2964254172 cites W2105016507 @default.
- W2964254172 cites W2106136378 @default.
- W2964254172 cites W2113438075 @default.
- W2964254172 cites W2124115696 @default.
- W2964254172 cites W2126711987 @default.
- W2964254172 cites W2129635682 @default.
- W2964254172 cites W2143766500 @default.
- W2964254172 cites W2164498514 @default.
- W2964254172 cites W2165654401 @default.
- W2964254172 cites W2341171179 @default.
- W2964254172 cites W2622763161 @default.
- W2964254172 cites W58109815 @default.
- W2964254172 cites W1521225740 @default.
- W2964254172 doi "https://doi.org/10.5555/2133036.2133165" @default.
- W2964254172 hasPublicationYear "2011" @default.
- W2964254172 type Work @default.
- W2964254172 sameAs 2964254172 @default.
- W2964254172 citedByCount "1" @default.
- W2964254172 countsByYear W29642541722014 @default.
- W2964254172 crossrefType "proceedings-article" @default.
- W2964254172 hasAuthorship W2964254172A5010457003 @default.
- W2964254172 hasAuthorship W2964254172A5015009174 @default.
- W2964254172 hasAuthorship W2964254172A5051953313 @default.
- W2964254172 hasAuthorship W2964254172A5069421706 @default.
- W2964254172 hasConcept C11413529 @default.
- W2964254172 hasConcept C115961682 @default.
- W2964254172 hasConcept C126255220 @default.
- W2964254172 hasConcept C134306372 @default.
- W2964254172 hasConcept C14036430 @default.
- W2964254172 hasConcept C153658351 @default.
- W2964254172 hasConcept C154945302 @default.
- W2964254172 hasConcept C159985019 @default.
- W2964254172 hasConcept C164660894 @default.
- W2964254172 hasConcept C192562407 @default.
- W2964254172 hasConcept C199360897 @default.
- W2964254172 hasConcept C204323151 @default.
- W2964254172 hasConcept C2777027219 @default.
- W2964254172 hasConcept C28826006 @default.
- W2964254172 hasConcept C33923547 @default.
- W2964254172 hasConcept C37404715 @default.
- W2964254172 hasConcept C41008148 @default.
- W2964254172 hasConcept C53533937 @default.
- W2964254172 hasConcept C78458016 @default.
- W2964254172 hasConcept C86803240 @default.
- W2964254172 hasConceptScore W2964254172C11413529 @default.
- W2964254172 hasConceptScore W2964254172C115961682 @default.
- W2964254172 hasConceptScore W2964254172C126255220 @default.
- W2964254172 hasConceptScore W2964254172C134306372 @default.
- W2964254172 hasConceptScore W2964254172C14036430 @default.
- W2964254172 hasConceptScore W2964254172C153658351 @default.
- W2964254172 hasConceptScore W2964254172C154945302 @default.
- W2964254172 hasConceptScore W2964254172C159985019 @default.
- W2964254172 hasConceptScore W2964254172C164660894 @default.
- W2964254172 hasConceptScore W2964254172C192562407 @default.
- W2964254172 hasConceptScore W2964254172C199360897 @default.
- W2964254172 hasConceptScore W2964254172C204323151 @default.
- W2964254172 hasConceptScore W2964254172C2777027219 @default.
- W2964254172 hasConceptScore W2964254172C28826006 @default.
- W2964254172 hasConceptScore W2964254172C33923547 @default.
- W2964254172 hasConceptScore W2964254172C37404715 @default.
- W2964254172 hasConceptScore W2964254172C41008148 @default.
- W2964254172 hasConceptScore W2964254172C53533937 @default.
- W2964254172 hasConceptScore W2964254172C78458016 @default.
- W2964254172 hasConceptScore W2964254172C86803240 @default.
- W2964254172 hasLocation W29642541721 @default.
- W2964254172 hasOpenAccess W2964254172 @default.
- W2964254172 hasPrimaryLocation W29642541721 @default.
- W2964254172 hasRelatedWork W1510763264 @default.
- W2964254172 hasRelatedWork W2013469768 @default.
- W2964254172 hasRelatedWork W2052595016 @default.
- W2964254172 hasRelatedWork W2057482456 @default.
- W2964254172 hasRelatedWork W2073647817 @default.