Matches in SemOpenAlex for { <https://semopenalex.org/work/W2964268718> ?p ?o ?g. }
- W2964268718 endingPage "6935" @default.
- W2964268718 startingPage "6924" @default.
- W2964268718 abstract "Machine learning has emerged as an invaluable tool in many research areas. In the present work, we harness this power to predict highly accurate molecular infrared spectra with unprecedented computational efficiency. To account for vibrational anharmonic and dynamical effects -- typically neglected by conventional quantum chemistry approaches -- we base our machine learning strategy on ab initio molecular dynamics simulations. While these simulations are usually extremely time consuming even for small molecules, we overcome these limitations by leveraging the power of a variety of machine learning techniques, not only accelerating simulations by several orders of magnitude, but also greatly extending the size of systems that can be treated. To this end, we develop a molecular dipole moment model based on environment dependent neural network charges and combine it with the neural network potentials of Behler and Parrinello. Contrary to the prevalent big data philosophy, we are able to obtain very accurate machine learning models for the prediction of infrared spectra based on only a few hundreds of electronic structure reference points. This is made possible through the introduction of a fully automated sampling scheme and the use of molecular forces during neural network potential training. We demonstrate the power of our machine learning approach by applying it to model the infrared spectra of a methanol molecule, n-alkanes containing up to 200 atoms and the protonated alanine tripeptide, which at the same time represents the first application of machine learning techniques to simulate the dynamics of a peptide. In all these case studies we find excellent agreement between the infrared spectra predicted via machine learning models and the respective theoretical and experimental spectra." @default.
- W2964268718 created "2019-07-30" @default.
- W2964268718 creator A5011992388 @default.
- W2964268718 creator A5026774143 @default.
- W2964268718 creator A5069215951 @default.
- W2964268718 date "2017-01-01" @default.
- W2964268718 modified "2023-10-17" @default.
- W2964268718 title "Machine learning molecular dynamics for the simulation of infrared spectra" @default.
- W2964268718 cites W1008534542 @default.
- W2964268718 cites W1975997599 @default.
- W2964268718 cites W1976147568 @default.
- W2964268718 cites W1978183953 @default.
- W2964268718 cites W1982549117 @default.
- W2964268718 cites W1984087004 @default.
- W2964268718 cites W1988091937 @default.
- W2964268718 cites W1996014895 @default.
- W2964268718 cites W1996384061 @default.
- W2964268718 cites W1998613997 @default.
- W2964268718 cites W2006370627 @default.
- W2964268718 cites W2015041956 @default.
- W2964268718 cites W2017891892 @default.
- W2964268718 cites W2023271753 @default.
- W2964268718 cites W2025444507 @default.
- W2964268718 cites W2025758627 @default.
- W2964268718 cites W2030687437 @default.
- W2964268718 cites W2036524141 @default.
- W2964268718 cites W2037464828 @default.
- W2964268718 cites W2038305447 @default.
- W2964268718 cites W2038533471 @default.
- W2964268718 cites W2038624954 @default.
- W2964268718 cites W2051792527 @default.
- W2964268718 cites W2053117030 @default.
- W2964268718 cites W2053856735 @default.
- W2964268718 cites W2055526416 @default.
- W2964268718 cites W2057858097 @default.
- W2964268718 cites W2058370262 @default.
- W2964268718 cites W2063007245 @default.
- W2964268718 cites W2078294955 @default.
- W2964268718 cites W2083956694 @default.
- W2964268718 cites W2085676823 @default.
- W2964268718 cites W2086957099 @default.
- W2964268718 cites W2091214494 @default.
- W2964268718 cites W2092157292 @default.
- W2964268718 cites W2093464914 @default.
- W2964268718 cites W2095100262 @default.
- W2964268718 cites W2096747776 @default.
- W2964268718 cites W2104827163 @default.
- W2964268718 cites W2128873947 @default.
- W2964268718 cites W2144062946 @default.
- W2964268718 cites W2146292423 @default.
- W2964268718 cites W2151334055 @default.
- W2964268718 cites W2162488002 @default.
- W2964268718 cites W2406709014 @default.
- W2964268718 cites W2416570751 @default.
- W2964268718 cites W2478294658 @default.
- W2964268718 cites W2527189750 @default.
- W2964268718 cites W2530960271 @default.
- W2964268718 cites W2541404351 @default.
- W2964268718 cites W2547447472 @default.
- W2964268718 cites W2561304328 @default.
- W2964268718 cites W2585152223 @default.
- W2964268718 cites W2593724699 @default.
- W2964268718 cites W2619609791 @default.
- W2964268718 cites W2620906374 @default.
- W2964268718 cites W2945914100 @default.
- W2964268718 cites W3099005864 @default.
- W2964268718 cites W3100630735 @default.
- W2964268718 cites W3101005742 @default.
- W2964268718 cites W3102693939 @default.
- W2964268718 doi "https://doi.org/10.1039/c7sc02267k" @default.
- W2964268718 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/29147518" @default.
- W2964268718 hasPublicationYear "2017" @default.
- W2964268718 type Work @default.
- W2964268718 sameAs 2964268718 @default.
- W2964268718 citedByCount "332" @default.
- W2964268718 countsByYear W29642687182017 @default.
- W2964268718 countsByYear W29642687182018 @default.
- W2964268718 countsByYear W29642687182019 @default.
- W2964268718 countsByYear W29642687182020 @default.
- W2964268718 countsByYear W29642687182021 @default.
- W2964268718 countsByYear W29642687182022 @default.
- W2964268718 countsByYear W29642687182023 @default.
- W2964268718 crossrefType "journal-article" @default.
- W2964268718 hasAuthorship W2964268718A5011992388 @default.
- W2964268718 hasAuthorship W2964268718A5026774143 @default.
- W2964268718 hasAuthorship W2964268718A5069215951 @default.
- W2964268718 hasBestOaLocation W29642687181 @default.
- W2964268718 hasConcept C119857082 @default.
- W2964268718 hasConcept C121332964 @default.
- W2964268718 hasConcept C121864883 @default.
- W2964268718 hasConcept C147597530 @default.
- W2964268718 hasConcept C147724859 @default.
- W2964268718 hasConcept C154945302 @default.
- W2964268718 hasConcept C173523689 @default.
- W2964268718 hasConcept C185592680 @default.
- W2964268718 hasConcept C2781442258 @default.
- W2964268718 hasConcept C41008148 @default.
- W2964268718 hasConcept C50644808 @default.