Matches in SemOpenAlex for { <https://semopenalex.org/work/W2964271407> ?p ?o ?g. }
- W2964271407 endingPage "400" @default.
- W2964271407 startingPage "363" @default.
- W2964271407 abstract "Let G be a finite group acting on k(x1,…,xn), the rational function field of n variables over a field k. The action is called a purely monomial action if σ⋅xj=∏1⩽i⩽nxiaij for all σ∈G, for 1⩽j⩽n where (aij)1⩽i,j⩽n∈GLn(Z). The main question is that, under what situations, the fixed field k(x1,…,xn)G is rational (= purely transcendental) over k. This rationality problem has been studied by Hajja, Kang, Hoshi, Rikuna when n⩽3. In this paper we will prove that k(x1,x2,x3,x4)G is rational over k provided that the purely monomial action is decomposable. To prove this result, we introduce a new notion, the quasi-monomial action, which is a generalization of previous notions of multiplicative group actions. Moreover, we determine the rationality problem of purely quasi-monomial actions of K(x,y)G over k where k=KG." @default.
- W2964271407 created "2019-07-30" @default.
- W2964271407 creator A5014289480 @default.
- W2964271407 creator A5038464497 @default.
- W2964271407 creator A5039044067 @default.
- W2964271407 date "2014-02-01" @default.
- W2964271407 modified "2023-10-16" @default.
- W2964271407 title "Quasi-monomial actions and some 4-dimensional rationality problems" @default.
- W2964271407 cites W1604195265 @default.
- W2964271407 cites W1983028743 @default.
- W2964271407 cites W1984463969 @default.
- W2964271407 cites W1992867983 @default.
- W2964271407 cites W2006287522 @default.
- W2964271407 cites W2007386239 @default.
- W2964271407 cites W2015274996 @default.
- W2964271407 cites W2019384999 @default.
- W2964271407 cites W2022862250 @default.
- W2964271407 cites W2028380631 @default.
- W2964271407 cites W2034145091 @default.
- W2964271407 cites W2036910290 @default.
- W2964271407 cites W2047795913 @default.
- W2964271407 cites W2050045276 @default.
- W2964271407 cites W2065875554 @default.
- W2964271407 cites W2072234950 @default.
- W2964271407 cites W2119509373 @default.
- W2964271407 cites W2149633797 @default.
- W2964271407 cites W2326305241 @default.
- W2964271407 cites W2962868159 @default.
- W2964271407 cites W2964101755 @default.
- W2964271407 cites W2964310638 @default.
- W2964271407 cites W82913150 @default.
- W2964271407 doi "https://doi.org/10.1016/j.jalgebra.2014.01.019" @default.
- W2964271407 hasPublicationYear "2014" @default.
- W2964271407 type Work @default.
- W2964271407 sameAs 2964271407 @default.
- W2964271407 citedByCount "22" @default.
- W2964271407 countsByYear W29642714072013 @default.
- W2964271407 countsByYear W29642714072014 @default.
- W2964271407 countsByYear W29642714072015 @default.
- W2964271407 countsByYear W29642714072016 @default.
- W2964271407 countsByYear W29642714072017 @default.
- W2964271407 countsByYear W29642714072018 @default.
- W2964271407 countsByYear W29642714072019 @default.
- W2964271407 countsByYear W29642714072020 @default.
- W2964271407 countsByYear W29642714072021 @default.
- W2964271407 countsByYear W29642714072023 @default.
- W2964271407 crossrefType "journal-article" @default.
- W2964271407 hasAuthorship W2964271407A5014289480 @default.
- W2964271407 hasAuthorship W2964271407A5038464497 @default.
- W2964271407 hasAuthorship W2964271407A5039044067 @default.
- W2964271407 hasBestOaLocation W29642714071 @default.
- W2964271407 hasConcept C11252640 @default.
- W2964271407 hasConcept C114614502 @default.
- W2964271407 hasConcept C118615104 @default.
- W2964271407 hasConcept C121332964 @default.
- W2964271407 hasConcept C134306372 @default.
- W2964271407 hasConcept C177148314 @default.
- W2964271407 hasConcept C17744445 @default.
- W2964271407 hasConcept C178790620 @default.
- W2964271407 hasConcept C185592680 @default.
- W2964271407 hasConcept C199539241 @default.
- W2964271407 hasConcept C201717286 @default.
- W2964271407 hasConcept C202444582 @default.
- W2964271407 hasConcept C2780791683 @default.
- W2964271407 hasConcept C2781311116 @default.
- W2964271407 hasConcept C33923547 @default.
- W2964271407 hasConcept C42747912 @default.
- W2964271407 hasConcept C62520636 @default.
- W2964271407 hasConcept C75190567 @default.
- W2964271407 hasConcept C92788228 @default.
- W2964271407 hasConcept C9652623 @default.
- W2964271407 hasConceptScore W2964271407C11252640 @default.
- W2964271407 hasConceptScore W2964271407C114614502 @default.
- W2964271407 hasConceptScore W2964271407C118615104 @default.
- W2964271407 hasConceptScore W2964271407C121332964 @default.
- W2964271407 hasConceptScore W2964271407C134306372 @default.
- W2964271407 hasConceptScore W2964271407C177148314 @default.
- W2964271407 hasConceptScore W2964271407C17744445 @default.
- W2964271407 hasConceptScore W2964271407C178790620 @default.
- W2964271407 hasConceptScore W2964271407C185592680 @default.
- W2964271407 hasConceptScore W2964271407C199539241 @default.
- W2964271407 hasConceptScore W2964271407C201717286 @default.
- W2964271407 hasConceptScore W2964271407C202444582 @default.
- W2964271407 hasConceptScore W2964271407C2780791683 @default.
- W2964271407 hasConceptScore W2964271407C2781311116 @default.
- W2964271407 hasConceptScore W2964271407C33923547 @default.
- W2964271407 hasConceptScore W2964271407C42747912 @default.
- W2964271407 hasConceptScore W2964271407C62520636 @default.
- W2964271407 hasConceptScore W2964271407C75190567 @default.
- W2964271407 hasConceptScore W2964271407C92788228 @default.
- W2964271407 hasConceptScore W2964271407C9652623 @default.
- W2964271407 hasFunder F4320311041 @default.
- W2964271407 hasFunder F4320334764 @default.
- W2964271407 hasLocation W29642714071 @default.
- W2964271407 hasLocation W29642714072 @default.
- W2964271407 hasOpenAccess W2964271407 @default.
- W2964271407 hasPrimaryLocation W29642714071 @default.
- W2964271407 hasRelatedWork W1983651862 @default.