Matches in SemOpenAlex for { <https://semopenalex.org/work/W2964275744> ?p ?o ?g. }
Showing items 1 to 60 of
60
with 100 items per page.
- W2964275744 endingPage "3545" @default.
- W2964275744 startingPage "3533" @default.
- W2964275744 abstract "An abelian group <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper A> <mml:semantics> <mml:mi>A</mml:mi> <mml:annotation encoding=application/x-tex>A</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is said to be cancellable if whenever <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper A circled-plus upper G> <mml:semantics> <mml:mrow> <mml:mi>A</mml:mi> <mml:mo>⊕<!-- ⊕ --></mml:mo> <mml:mi>G</mml:mi> </mml:mrow> <mml:annotation encoding=application/x-tex>A oplus G</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is isomorphic to <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper A circled-plus upper H> <mml:semantics> <mml:mrow> <mml:mi>A</mml:mi> <mml:mo>⊕<!-- ⊕ --></mml:mo> <mml:mi>H</mml:mi> </mml:mrow> <mml:annotation encoding=application/x-tex>A oplus H</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper G> <mml:semantics> <mml:mi>G</mml:mi> <mml:annotation encoding=application/x-tex>G</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is isomorphic to <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper H> <mml:semantics> <mml:mi>H</mml:mi> <mml:annotation encoding=application/x-tex>H</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. We show that the index set of cancellable rank 1 torsion-free abelian groups is <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=normal upper Pi 4 Superscript 0> <mml:semantics> <mml:msubsup> <mml:mi mathvariant=normal>Π<!-- Π --></mml:mi> <mml:mn>4</mml:mn> <mml:mn>0</mml:mn> </mml:msubsup> <mml:annotation encoding=application/x-tex>Pi ^0_4</mml:annotation> </mml:semantics> </mml:math> </inline-formula> <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=m> <mml:semantics> <mml:mi>m</mml:mi> <mml:annotation encoding=application/x-tex>m</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-complete, showing that the classification by Fuchs and Loonstra cannot be simplified. For arbitrary non-finitely generated groups, we show that the cancellation property is <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=normal upper Pi 1 Superscript 1> <mml:semantics> <mml:msubsup> <mml:mi mathvariant=normal>Π<!-- Π --></mml:mi> <mml:mn>1</mml:mn> <mml:mn>1</mml:mn> </mml:msubsup> <mml:annotation encoding=application/x-tex>Pi ^1_1</mml:annotation> </mml:semantics> </mml:math> </inline-formula> <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=m> <mml:semantics> <mml:mi>m</mml:mi> <mml:annotation encoding=application/x-tex>m</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-hard; we know of no upper bound, but we conjecture that it is <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=normal upper Pi 2 Superscript 1> <mml:semantics> <mml:msubsup> <mml:mi mathvariant=normal>Π<!-- Π --></mml:mi> <mml:mn>2</mml:mn> <mml:mn>1</mml:mn> </mml:msubsup> <mml:annotation encoding=application/x-tex>Pi ^1_2</mml:annotation> </mml:semantics> </mml:math> </inline-formula> <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=m> <mml:semantics> <mml:mi>m</mml:mi> <mml:annotation encoding=application/x-tex>m</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-complete." @default.
- W2964275744 created "2019-07-30" @default.
- W2964275744 creator A5017120398 @default.
- W2964275744 creator A5027707580 @default.
- W2964275744 date "2019-05-01" @default.
- W2964275744 modified "2023-09-26" @default.
- W2964275744 title "Characterizations of cancellable groups" @default.
- W2964275744 cites W1501560805 @default.
- W2964275744 cites W1964777739 @default.
- W2964275744 cites W2035586000 @default.
- W2964275744 cites W2063974450 @default.
- W2964275744 cites W2085090426 @default.
- W2964275744 cites W2116716120 @default.
- W2964275744 cites W2342149294 @default.
- W2964275744 cites W4230594961 @default.
- W2964275744 cites W4240611819 @default.
- W2964275744 cites W4246541295 @default.
- W2964275744 cites W4246872945 @default.
- W2964275744 cites W4247699120 @default.
- W2964275744 doi "https://doi.org/10.1090/proc/14546" @default.
- W2964275744 hasPublicationYear "2019" @default.
- W2964275744 type Work @default.
- W2964275744 sameAs 2964275744 @default.
- W2964275744 citedByCount "1" @default.
- W2964275744 countsByYear W29642757442022 @default.
- W2964275744 crossrefType "journal-article" @default.
- W2964275744 hasAuthorship W2964275744A5017120398 @default.
- W2964275744 hasAuthorship W2964275744A5027707580 @default.
- W2964275744 hasBestOaLocation W29642757441 @default.
- W2964275744 hasConcept C11413529 @default.
- W2964275744 hasConcept C154945302 @default.
- W2964275744 hasConcept C2776321320 @default.
- W2964275744 hasConcept C41008148 @default.
- W2964275744 hasConceptScore W2964275744C11413529 @default.
- W2964275744 hasConceptScore W2964275744C154945302 @default.
- W2964275744 hasConceptScore W2964275744C2776321320 @default.
- W2964275744 hasConceptScore W2964275744C41008148 @default.
- W2964275744 hasFunder F4320334593 @default.
- W2964275744 hasIssue "8" @default.
- W2964275744 hasLocation W29642757441 @default.
- W2964275744 hasLocation W29642757442 @default.
- W2964275744 hasOpenAccess W2964275744 @default.
- W2964275744 hasPrimaryLocation W29642757441 @default.
- W2964275744 hasRelatedWork W1490908374 @default.
- W2964275744 hasRelatedWork W151193258 @default.
- W2964275744 hasRelatedWork W1529400504 @default.
- W2964275744 hasRelatedWork W1549203972 @default.
- W2964275744 hasRelatedWork W1607472309 @default.
- W2964275744 hasRelatedWork W1871911958 @default.
- W2964275744 hasRelatedWork W1892467659 @default.
- W2964275744 hasRelatedWork W2808586768 @default.
- W2964275744 hasRelatedWork W2998403542 @default.
- W2964275744 hasRelatedWork W38394648 @default.
- W2964275744 hasVolume "147" @default.
- W2964275744 isParatext "false" @default.
- W2964275744 isRetracted "false" @default.
- W2964275744 magId "2964275744" @default.
- W2964275744 workType "article" @default.