Matches in SemOpenAlex for { <https://semopenalex.org/work/W2964278538> ?p ?o ?g. }
- W2964278538 endingPage "608" @default.
- W2964278538 startingPage "595" @default.
- W2964278538 abstract "In this paper, we present the elitist particle filter based on evolutionary strategies (EPFES) as an efficient approach to estimate the statistics of a latent state vector capturing the relevant information of a nonlinear system. Similar to classical particle filtering, the EPFES consists of a set of particles and respective weights which represent different realizations of the latent state vector and their likelihood of being the solution of the optimization problem. As main innovation, the EPFES includes an evolutionary elitist-particle selection scheme which combines long-term information with instantaneous sampling from an approximated continuous posterior distribution. In this paper, we propose two advancements of the previously published elitist-particle selection process. Further, the EPFES is shown to be a generalization of the widely-used Gaussian particle filter and thus evaluated with respect to the latter: First, we consider the univariate nonstationary growth model with time-variant latent state variable to evaluate the tracking capabilities of the EPFES for instantaneously calculated particle weights. This is followed by addressing the problem of single-channel nonlinear acoustic echo cancellation as a challenging benchmark task for identifying an unknown system of large search space: the nonlinear acoustic echo path is modeled by a cascade of a parameterized preprocessor (to model the loudspeaker signal distortions) and a linear FIR filter (to model the sound wave propagation and the microphone). By using long-term information, we highlight the efficacy of the well-generalizing EPFES in estimating the preprocessor parameters for a simulated scenario and a real smartphone recording. Finally, we illustrate similarities between the EPFES and evolutionary algorithms to outline future improvements by fusing the achievements of both fields of research." @default.
- W2964278538 created "2019-07-30" @default.
- W2964278538 creator A5021451799 @default.
- W2964278538 creator A5039041764 @default.
- W2964278538 creator A5068787682 @default.
- W2964278538 creator A5090454997 @default.
- W2964278538 date "2018-03-01" @default.
- W2964278538 modified "2023-09-28" @default.
- W2964278538 title "Estimating Parameters of Nonlinear Systems Using the Elitist Particle Filter Based on Evolutionary Strategies" @default.
- W2964278538 cites W1483307070 @default.
- W2964278538 cites W1508609559 @default.
- W2964278538 cites W1512383952 @default.
- W2964278538 cites W1568834902 @default.
- W2964278538 cites W1628268552 @default.
- W2964278538 cites W1968669537 @default.
- W2964278538 cites W1973636889 @default.
- W2964278538 cites W1975388742 @default.
- W2964278538 cites W1976219102 @default.
- W2964278538 cites W1976318454 @default.
- W2964278538 cites W1978427310 @default.
- W2964278538 cites W1979544118 @default.
- W2964278538 cites W1979930092 @default.
- W2964278538 cites W1981323771 @default.
- W2964278538 cites W1987174492 @default.
- W2964278538 cites W1996020477 @default.
- W2964278538 cites W1998520805 @default.
- W2964278538 cites W2006726487 @default.
- W2964278538 cites W2012759149 @default.
- W2964278538 cites W2016120704 @default.
- W2964278538 cites W2018700355 @default.
- W2964278538 cites W2023546988 @default.
- W2964278538 cites W2029318526 @default.
- W2964278538 cites W2034638013 @default.
- W2964278538 cites W2040196349 @default.
- W2964278538 cites W2045227392 @default.
- W2964278538 cites W2055936398 @default.
- W2964278538 cites W2064119066 @default.
- W2964278538 cites W2068820155 @default.
- W2964278538 cites W2071461642 @default.
- W2964278538 cites W2073117938 @default.
- W2964278538 cites W2076088651 @default.
- W2964278538 cites W2098613108 @default.
- W2964278538 cites W2105532434 @default.
- W2964278538 cites W2114760189 @default.
- W2964278538 cites W2116954712 @default.
- W2964278538 cites W2118867423 @default.
- W2964278538 cites W2119539043 @default.
- W2964278538 cites W2125733767 @default.
- W2964278538 cites W2126574351 @default.
- W2964278538 cites W2126736494 @default.
- W2964278538 cites W2127524723 @default.
- W2964278538 cites W2127900082 @default.
- W2964278538 cites W2133219954 @default.
- W2964278538 cites W2135852297 @default.
- W2964278538 cites W2136344727 @default.
- W2964278538 cites W2142612324 @default.
- W2964278538 cites W2146615705 @default.
- W2964278538 cites W2149048172 @default.
- W2964278538 cites W2150621701 @default.
- W2964278538 cites W2152781837 @default.
- W2964278538 cites W2153956297 @default.
- W2964278538 cites W2157651892 @default.
- W2964278538 cites W2159355638 @default.
- W2964278538 cites W2159475524 @default.
- W2964278538 cites W2159901472 @default.
- W2964278538 cites W2160337655 @default.
- W2964278538 cites W2161608096 @default.
- W2964278538 cites W2162733643 @default.
- W2964278538 cites W2169384417 @default.
- W2964278538 cites W2178829616 @default.
- W2964278538 cites W2481926318 @default.
- W2964278538 cites W2561499368 @default.
- W2964278538 cites W2735102987 @default.
- W2964278538 cites W3099553626 @default.
- W2964278538 cites W3104433300 @default.
- W2964278538 cites W4301173492 @default.
- W2964278538 cites W48610814 @default.
- W2964278538 cites W988335224 @default.
- W2964278538 doi "https://doi.org/10.1109/taslp.2017.2788183" @default.
- W2964278538 hasPublicationYear "2018" @default.
- W2964278538 type Work @default.
- W2964278538 sameAs 2964278538 @default.
- W2964278538 citedByCount "11" @default.
- W2964278538 countsByYear W29642785382018 @default.
- W2964278538 countsByYear W29642785382019 @default.
- W2964278538 countsByYear W29642785382020 @default.
- W2964278538 countsByYear W29642785382021 @default.
- W2964278538 countsByYear W29642785382023 @default.
- W2964278538 crossrefType "journal-article" @default.
- W2964278538 hasAuthorship W2964278538A5021451799 @default.
- W2964278538 hasAuthorship W2964278538A5039041764 @default.
- W2964278538 hasAuthorship W2964278538A5068787682 @default.
- W2964278538 hasAuthorship W2964278538A5090454997 @default.
- W2964278538 hasBestOaLocation W29642785382 @default.
- W2964278538 hasConcept C106131492 @default.
- W2964278538 hasConcept C11413529 @default.
- W2964278538 hasConcept C121332964 @default.
- W2964278538 hasConcept C126255220 @default.