Matches in SemOpenAlex for { <https://semopenalex.org/work/W2964283485> ?p ?o ?g. }
- W2964283485 endingPage "4808" @default.
- W2964283485 startingPage "4760" @default.
- W2964283485 abstract "There is a widespread need for statistical methods that can analyze high-dimensional datasets without imposing restrictive or opaque modeling assumptions. This paper describes a domain-general data analysis method called CrossCat. CrossCat infers multiple non-overlapping views of the data, each consisting of a subset of the variables, and uses a separate nonparametric mixture to model each view. CrossCat is based on approximately Bayesian inference in a hierarchical, nonparametric model for data tables. This model consists of a Dirichlet process mixture over the columns of a data table in which each mixture component is itself an independent Dirichlet process mixture over the rows; the inner mixture components are simple parametric models whose form depends on the types of data in the table. CrossCat combines strengths of mixture modeling and Bayesian network structure learning. Like mixture modeling, CrossCat can model a broad class of distributions by positing latent variables, and produces representations that can be efficiently conditioned and sampled from for prediction. Like Bayesian networks, CrossCat represents the dependencies and independencies between variables, and thus remains accurate when there are multiple statistical signals. Inference is done via a scalable Gibbs sampling scheme; this paper shows that it works well in practice. This paper also includes empirical results on heterogeneous tabular data of up to 10 million cells, such as hospital cost and quality measures, voting records, unemployment rates, gene expression measurements, and images of handwritten digits. CrossCat infers structure that is consistent with accepted findings and common-sense knowledge in multiple domains and yields predictive accuracy competitive with generative, discriminative, and model-free alternatives." @default.
- W2964283485 created "2019-07-30" @default.
- W2964283485 creator A5002781291 @default.
- W2964283485 creator A5015419380 @default.
- W2964283485 creator A5021999168 @default.
- W2964283485 creator A5058786389 @default.
- W2964283485 creator A5068340465 @default.
- W2964283485 creator A5071093940 @default.
- W2964283485 date "2016-01-01" @default.
- W2964283485 modified "2023-09-26" @default.
- W2964283485 title "CrossCat: a fully Bayesian nonparametric method for analyzing heterogeneous, high dimensional data" @default.
- W2964283485 cites W1516024365 @default.
- W2964283485 cites W1539641175 @default.
- W2964283485 cites W1554944419 @default.
- W2964283485 cites W1576650090 @default.
- W2964283485 cites W1844453107 @default.
- W2964283485 cites W1907257599 @default.
- W2964283485 cites W2006173427 @default.
- W2964283485 cites W2016700676 @default.
- W2964283485 cites W2024800283 @default.
- W2964283485 cites W2037619809 @default.
- W2964283485 cites W2037668034 @default.
- W2964283485 cites W2051324180 @default.
- W2964283485 cites W2055394075 @default.
- W2964283485 cites W2074700695 @default.
- W2964283485 cites W2077870633 @default.
- W2964283485 cites W2080972498 @default.
- W2964283485 cites W2091797506 @default.
- W2964283485 cites W2095067466 @default.
- W2964283485 cites W2097089247 @default.
- W2964283485 cites W2097839764 @default.
- W2964283485 cites W2098712614 @default.
- W2964283485 cites W2103160678 @default.
- W2964283485 cites W2105480138 @default.
- W2964283485 cites W2110065044 @default.
- W2964283485 cites W2110877857 @default.
- W2964283485 cites W2120636621 @default.
- W2964283485 cites W2121207090 @default.
- W2964283485 cites W2130416410 @default.
- W2964283485 cites W2132555912 @default.
- W2964283485 cites W2132827946 @default.
- W2964283485 cites W2136105491 @default.
- W2964283485 cites W2136450052 @default.
- W2964283485 cites W2138137770 @default.
- W2964283485 cites W2150286230 @default.
- W2964283485 cites W2151792436 @default.
- W2964283485 cites W2158190429 @default.
- W2964283485 cites W2158266063 @default.
- W2964283485 cites W2162021827 @default.
- W2964283485 cites W2182969193 @default.
- W2964283485 cites W2293997450 @default.
- W2964283485 cites W2622463260 @default.
- W2964283485 cites W263545290 @default.
- W2964283485 cites W2949727452 @default.
- W2964283485 cites W2979006918 @default.
- W2964283485 cites W3122858766 @default.
- W2964283485 hasPublicationYear "2016" @default.
- W2964283485 type Work @default.
- W2964283485 sameAs 2964283485 @default.
- W2964283485 citedByCount "5" @default.
- W2964283485 countsByYear W29642834852016 @default.
- W2964283485 countsByYear W29642834852017 @default.
- W2964283485 countsByYear W29642834852020 @default.
- W2964283485 countsByYear W29642834852021 @default.
- W2964283485 crossrefType "journal-article" @default.
- W2964283485 hasAuthorship W2964283485A5002781291 @default.
- W2964283485 hasAuthorship W2964283485A5015419380 @default.
- W2964283485 hasAuthorship W2964283485A5021999168 @default.
- W2964283485 hasAuthorship W2964283485A5058786389 @default.
- W2964283485 hasAuthorship W2964283485A5068340465 @default.
- W2964283485 hasAuthorship W2964283485A5071093940 @default.
- W2964283485 hasConcept C102366305 @default.
- W2964283485 hasConcept C105795698 @default.
- W2964283485 hasConcept C107673813 @default.
- W2964283485 hasConcept C119857082 @default.
- W2964283485 hasConcept C124101348 @default.
- W2964283485 hasConcept C134306372 @default.
- W2964283485 hasConcept C141318989 @default.
- W2964283485 hasConcept C153180895 @default.
- W2964283485 hasConcept C154945302 @default.
- W2964283485 hasConcept C158424031 @default.
- W2964283485 hasConcept C160234255 @default.
- W2964283485 hasConcept C169214877 @default.
- W2964283485 hasConcept C171686336 @default.
- W2964283485 hasConcept C182310444 @default.
- W2964283485 hasConcept C2776214188 @default.
- W2964283485 hasConcept C2781280628 @default.
- W2964283485 hasConcept C33923547 @default.
- W2964283485 hasConcept C41008148 @default.
- W2964283485 hasConcept C500882744 @default.
- W2964283485 hasConcept C51167844 @default.
- W2964283485 hasConcept C61224824 @default.
- W2964283485 hasConceptScore W2964283485C102366305 @default.
- W2964283485 hasConceptScore W2964283485C105795698 @default.
- W2964283485 hasConceptScore W2964283485C107673813 @default.
- W2964283485 hasConceptScore W2964283485C119857082 @default.
- W2964283485 hasConceptScore W2964283485C124101348 @default.
- W2964283485 hasConceptScore W2964283485C134306372 @default.