Matches in SemOpenAlex for { <https://semopenalex.org/work/W2964287564> ?p ?o ?g. }
- W2964287564 abstract "We propose a general Principal Orthogonal complEment Thresholding (POET) framework for large-scale covariance matrix estimation based on the approximate factor model. A set of high level sufficient conditions for the procedure to achieve optimal rates of convergence under different matrix norms is established to better understand how POET works. Such a framework allows us to recover existing results for sub-Gaussian data in a more transparent way that only depends on the concentration properties of the sample covariance matrix. As a new theoretical contribution, for the first time, such a framework allows us to exploit conditional sparsity covariance structure for the heavy-tailed data. In particular, for the elliptical distribution, we propose a robust estimator based on the marginal and spatial Kendall's tau to satisfy these conditions. In addition, we study conditional graphical model under the same framework. The technical tools developed in this paper are of general interest to high dimensional principal component analysis. Thorough numerical results are also provided to back up the developed theory." @default.
- W2964287564 created "2019-07-30" @default.
- W2964287564 creator A5019708503 @default.
- W2964287564 creator A5031910872 @default.
- W2964287564 creator A5080111161 @default.
- W2964287564 date "2018-08-01" @default.
- W2964287564 modified "2023-10-11" @default.
- W2964287564 title "Large covariance estimation through elliptical factor models" @default.
- W2964287564 cites W1511694993 @default.
- W2964287564 cites W170820490 @default.
- W2964287564 cites W1939766099 @default.
- W2964287564 cites W1963874316 @default.
- W2964287564 cites W1970377488 @default.
- W2964287564 cites W1972163814 @default.
- W2964287564 cites W1975900269 @default.
- W2964287564 cites W1978494516 @default.
- W2964287564 cites W1981469185 @default.
- W2964287564 cites W1981638497 @default.
- W2964287564 cites W1989727964 @default.
- W2964287564 cites W1989898472 @default.
- W2964287564 cites W1994938797 @default.
- W2964287564 cites W1996742192 @default.
- W2964287564 cites W2006452405 @default.
- W2964287564 cites W2015590593 @default.
- W2964287564 cites W2025440555 @default.
- W2964287564 cites W2035076036 @default.
- W2964287564 cites W2036365461 @default.
- W2964287564 cites W2040373108 @default.
- W2964287564 cites W2044825056 @default.
- W2964287564 cites W2046033161 @default.
- W2964287564 cites W2047188970 @default.
- W2964287564 cites W2051623559 @default.
- W2964287564 cites W2054044693 @default.
- W2964287564 cites W2056559424 @default.
- W2964287564 cites W2057535756 @default.
- W2964287564 cites W2062052013 @default.
- W2964287564 cites W2065260559 @default.
- W2964287564 cites W2068135051 @default.
- W2964287564 cites W2073681337 @default.
- W2964287564 cites W2074609004 @default.
- W2964287564 cites W2081531193 @default.
- W2964287564 cites W2081746825 @default.
- W2964287564 cites W2082830048 @default.
- W2964287564 cites W2089893077 @default.
- W2964287564 cites W2094754409 @default.
- W2964287564 cites W2096904991 @default.
- W2964287564 cites W2097581234 @default.
- W2964287564 cites W2097714737 @default.
- W2964287564 cites W2104313063 @default.
- W2964287564 cites W2110285888 @default.
- W2964287564 cites W2129187399 @default.
- W2964287564 cites W2132555912 @default.
- W2964287564 cites W2135311088 @default.
- W2964287564 cites W2144681067 @default.
- W2964287564 cites W2148289138 @default.
- W2964287564 cites W2150278081 @default.
- W2964287564 cites W2155813684 @default.
- W2964287564 cites W2157979130 @default.
- W2964287564 cites W2159706540 @default.
- W2964287564 cites W2159718141 @default.
- W2964287564 cites W2162328283 @default.
- W2964287564 cites W2338469198 @default.
- W2964287564 cites W2524520044 @default.
- W2964287564 cites W2626872000 @default.
- W2964287564 cites W2962927523 @default.
- W2964287564 cites W2964287564 @default.
- W2964287564 cites W2964288039 @default.
- W2964287564 cites W2965497096 @default.
- W2964287564 cites W3024319689 @default.
- W2964287564 cites W3098365576 @default.
- W2964287564 cites W3098826229 @default.
- W2964287564 cites W3098834468 @default.
- W2964287564 cites W3098880893 @default.
- W2964287564 cites W3099324314 @default.
- W2964287564 cites W3099609308 @default.
- W2964287564 cites W3100350825 @default.
- W2964287564 cites W3101498811 @default.
- W2964287564 cites W3101582723 @default.
- W2964287564 cites W3101788651 @default.
- W2964287564 cites W3102974460 @default.
- W2964287564 cites W3103368540 @default.
- W2964287564 cites W3103699839 @default.
- W2964287564 cites W3104624268 @default.
- W2964287564 cites W3105644508 @default.
- W2964287564 cites W3106209397 @default.
- W2964287564 cites W3106324661 @default.
- W2964287564 cites W3114411530 @default.
- W2964287564 cites W3125188740 @default.
- W2964287564 cites W4229530126 @default.
- W2964287564 cites W4300246981 @default.
- W2964287564 cites W4362131110 @default.
- W2964287564 doi "https://doi.org/10.1214/17-aos1588" @default.
- W2964287564 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6133289" @default.
- W2964287564 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30214095" @default.
- W2964287564 hasPublicationYear "2018" @default.
- W2964287564 type Work @default.
- W2964287564 sameAs 2964287564 @default.
- W2964287564 citedByCount "61" @default.
- W2964287564 countsByYear W29642875642018 @default.
- W2964287564 countsByYear W29642875642019 @default.