Matches in SemOpenAlex for { <https://semopenalex.org/work/W2964291233> ?p ?o ?g. }
- W2964291233 endingPage "108" @default.
- W2964291233 startingPage "97" @default.
- W2964291233 abstract "Research in human action recognition has accelerated significantly since the introduction of powerful machine learning tools such as Convolutional Neural Networks (CNNs). However, effective and efficient methods for incorporation of temporal information into CNNs are still being actively explored in the recent literature. Motivated by the popular recurrent attention models in the research area of natural language processing, we propose the Attention-based Temporal Weighted CNN (ATW), which embeds a visual attention model into a temporal weighted multi-stream CNN. This attention model is simply implemented as temporal weighting yet it effectively boosts the recognition performance of video representations. Besides, each stream in the proposed ATW framework is capable of end-to-end training, with both network parameters and temporal weights optimized by stochastic gradient descent (SGD) with backpropagation. Our experiments show that the proposed attention mechanism contributes substantially to the performance gains with the more discriminative snippets by focusing on more relevant video segments." @default.
- W2964291233 created "2019-07-30" @default.
- W2964291233 creator A5021095828 @default.
- W2964291233 creator A5040629308 @default.
- W2964291233 creator A5046289151 @default.
- W2964291233 creator A5047405956 @default.
- W2964291233 creator A5077265169 @default.
- W2964291233 creator A5081114810 @default.
- W2964291233 date "2018-01-01" @default.
- W2964291233 modified "2023-10-12" @default.
- W2964291233 title "Attention-Based Temporal Weighted Convolutional Neural Network for Action Recognition" @default.
- W2964291233 cites W1522734439 @default.
- W2964291233 cites W1586939924 @default.
- W2964291233 cites W1744759976 @default.
- W2964291233 cites W1902237438 @default.
- W2964291233 cites W1903029394 @default.
- W2964291233 cites W1923404803 @default.
- W2964291233 cites W1926645898 @default.
- W2964291233 cites W1932274155 @default.
- W2964291233 cites W1944615693 @default.
- W2964291233 cites W1970033169 @default.
- W2964291233 cites W1980176153 @default.
- W2964291233 cites W1983364832 @default.
- W2964291233 cites W2015311006 @default.
- W2964291233 cites W2016053056 @default.
- W2964291233 cites W2020163092 @default.
- W2964291233 cites W2046561909 @default.
- W2964291233 cites W2084341401 @default.
- W2964291233 cites W2105101328 @default.
- W2964291233 cites W2108598243 @default.
- W2964291233 cites W2126574503 @default.
- W2964291233 cites W2175640409 @default.
- W2964291233 cites W2194775991 @default.
- W2964291233 cites W2235034809 @default.
- W2964291233 cites W2240947865 @default.
- W2964291233 cites W2304930553 @default.
- W2964291233 cites W2342662179 @default.
- W2964291233 cites W2472293097 @default.
- W2964291233 cites W2507009361 @default.
- W2964291233 cites W2540247209 @default.
- W2964291233 cites W2624442909 @default.
- W2964291233 cites W2767198899 @default.
- W2964291233 cites W2951183276 @default.
- W2964291233 cites W2963524571 @default.
- W2964291233 cites W2964191259 @default.
- W2964291233 cites W2964253156 @default.
- W2964291233 cites W4249279051 @default.
- W2964291233 cites W88469699 @default.
- W2964291233 doi "https://doi.org/10.1007/978-3-319-92007-8_9" @default.
- W2964291233 hasPublicationYear "2018" @default.
- W2964291233 type Work @default.
- W2964291233 sameAs 2964291233 @default.
- W2964291233 citedByCount "40" @default.
- W2964291233 countsByYear W29642912332018 @default.
- W2964291233 countsByYear W29642912332019 @default.
- W2964291233 countsByYear W29642912332020 @default.
- W2964291233 countsByYear W29642912332021 @default.
- W2964291233 countsByYear W29642912332022 @default.
- W2964291233 countsByYear W29642912332023 @default.
- W2964291233 crossrefType "book-chapter" @default.
- W2964291233 hasAuthorship W2964291233A5021095828 @default.
- W2964291233 hasAuthorship W2964291233A5040629308 @default.
- W2964291233 hasAuthorship W2964291233A5046289151 @default.
- W2964291233 hasAuthorship W2964291233A5047405956 @default.
- W2964291233 hasAuthorship W2964291233A5077265169 @default.
- W2964291233 hasAuthorship W2964291233A5081114810 @default.
- W2964291233 hasBestOaLocation W29642912332 @default.
- W2964291233 hasConcept C121332964 @default.
- W2964291233 hasConcept C153180895 @default.
- W2964291233 hasConcept C154945302 @default.
- W2964291233 hasConcept C2777212361 @default.
- W2964291233 hasConcept C2780791683 @default.
- W2964291233 hasConcept C2987834672 @default.
- W2964291233 hasConcept C41008148 @default.
- W2964291233 hasConcept C62520636 @default.
- W2964291233 hasConcept C81363708 @default.
- W2964291233 hasConceptScore W2964291233C121332964 @default.
- W2964291233 hasConceptScore W2964291233C153180895 @default.
- W2964291233 hasConceptScore W2964291233C154945302 @default.
- W2964291233 hasConceptScore W2964291233C2777212361 @default.
- W2964291233 hasConceptScore W2964291233C2780791683 @default.
- W2964291233 hasConceptScore W2964291233C2987834672 @default.
- W2964291233 hasConceptScore W2964291233C41008148 @default.
- W2964291233 hasConceptScore W2964291233C62520636 @default.
- W2964291233 hasConceptScore W2964291233C81363708 @default.
- W2964291233 hasLocation W29642912331 @default.
- W2964291233 hasLocation W29642912332 @default.
- W2964291233 hasLocation W29642912333 @default.
- W2964291233 hasLocation W29642912334 @default.
- W2964291233 hasOpenAccess W2964291233 @default.
- W2964291233 hasPrimaryLocation W29642912331 @default.
- W2964291233 hasRelatedWork W2726222394 @default.
- W2964291233 hasRelatedWork W2748454020 @default.
- W2964291233 hasRelatedWork W2767651786 @default.
- W2964291233 hasRelatedWork W2795780316 @default.
- W2964291233 hasRelatedWork W2912288872 @default.
- W2964291233 hasRelatedWork W2941155331 @default.
- W2964291233 hasRelatedWork W3106494386 @default.