Matches in SemOpenAlex for { <https://semopenalex.org/work/W2964293248> ?p ?o ?g. }
- W2964293248 endingPage "557" @default.
- W2964293248 startingPage "535" @default.
- W2964293248 abstract "In this review we address to what extent computational techniques can augment our ability to predict toxicity. The first section provides a brief history of empirical observations on toxicity dating back to the dawn of Sumerian civilization. Interestingly, the concept of dose emerged very early on, leading up to the modern emphasis on kinetic properties, which in turn encodes the insight that toxicity is not solely a property of a compound but instead depends on the interaction with the host organism. The next logical step is the current conception of evaluating drugs from a personalized medicine point of view. We review recent work on integrating what could be referred to as classical pharmacokinetic analysis with emerging systems biology approaches incorporating multiple omics data. These systems approaches employ advanced statistical analytical data processing complemented with machine learning techniques and use both pharmacokinetic and omics data. We find that such integrated approaches not only provide improved predictions of toxicity but also enable mechanistic interpretations of the molecular mechanisms underpinning toxicity and drug resistance. We conclude the chapter by discussing some of the main challenges, such as how to balance the inherent tension between the predicitive capacity of models, which in practice amounts to constraining the number of features in the models versus allowing for rich mechanistic interpretability, i.e., equipping models with numerous molecular features. This challenge also requires patient-specific predictions on toxicity, which in turn requires proper stratification of patients as regards how they respond, with or without adverse toxic effects. In summary, the transformation of the ancient concept of dose is currently successfully operationalized using rich integrative data encoded in patient-specific models." @default.
- W2964293248 created "2019-07-30" @default.
- W2964293248 creator A5003718950 @default.
- W2964293248 creator A5015790535 @default.
- W2964293248 creator A5035252549 @default.
- W2964293248 creator A5055536778 @default.
- W2964293248 date "2018-01-01" @default.
- W2964293248 modified "2023-10-09" @default.
- W2964293248 title "Predictive Systems Toxicology" @default.
- W2964293248 cites W1466286227 @default.
- W2964293248 cites W1544009106 @default.
- W2964293248 cites W1853964860 @default.
- W2964293248 cites W1954924279 @default.
- W2964293248 cites W1963600251 @default.
- W2964293248 cites W1978486653 @default.
- W2964293248 cites W1980409763 @default.
- W2964293248 cites W1982438076 @default.
- W2964293248 cites W1988195734 @default.
- W2964293248 cites W2004454306 @default.
- W2964293248 cites W2006475929 @default.
- W2964293248 cites W2007280048 @default.
- W2964293248 cites W2017398555 @default.
- W2964293248 cites W2017890053 @default.
- W2964293248 cites W2018408116 @default.
- W2964293248 cites W2022513026 @default.
- W2964293248 cites W2024088210 @default.
- W2964293248 cites W2035753075 @default.
- W2964293248 cites W2035977761 @default.
- W2964293248 cites W2037927825 @default.
- W2964293248 cites W2041063545 @default.
- W2964293248 cites W2041473955 @default.
- W2964293248 cites W2047708582 @default.
- W2964293248 cites W2049946556 @default.
- W2964293248 cites W2051730284 @default.
- W2964293248 cites W2059471041 @default.
- W2964293248 cites W2066201825 @default.
- W2964293248 cites W2069978879 @default.
- W2964293248 cites W2070789802 @default.
- W2964293248 cites W2070873509 @default.
- W2964293248 cites W2073229355 @default.
- W2964293248 cites W2074617510 @default.
- W2964293248 cites W2079745490 @default.
- W2964293248 cites W2080751938 @default.
- W2964293248 cites W2085292179 @default.
- W2964293248 cites W2091734240 @default.
- W2964293248 cites W2093117046 @default.
- W2964293248 cites W2095117866 @default.
- W2964293248 cites W2097233276 @default.
- W2964293248 cites W2097690822 @default.
- W2964293248 cites W2099060738 @default.
- W2964293248 cites W2100245828 @default.
- W2964293248 cites W2100811683 @default.
- W2964293248 cites W2103368657 @default.
- W2964293248 cites W2106029302 @default.
- W2964293248 cites W2106907365 @default.
- W2964293248 cites W2106966651 @default.
- W2964293248 cites W2107065429 @default.
- W2964293248 cites W2110412254 @default.
- W2964293248 cites W2113072832 @default.
- W2964293248 cites W2113494611 @default.
- W2964293248 cites W2115702862 @default.
- W2964293248 cites W2120405850 @default.
- W2964293248 cites W2120850582 @default.
- W2964293248 cites W2121404927 @default.
- W2964293248 cites W2123531184 @default.
- W2964293248 cites W2125621954 @default.
- W2964293248 cites W2127132032 @default.
- W2964293248 cites W2127222213 @default.
- W2964293248 cites W2135306073 @default.
- W2964293248 cites W2140239055 @default.
- W2964293248 cites W2143251418 @default.
- W2964293248 cites W2143943547 @default.
- W2964293248 cites W2148757128 @default.
- W2964293248 cites W2153121902 @default.
- W2964293248 cites W2156868660 @default.
- W2964293248 cites W2160785561 @default.
- W2964293248 cites W2165526004 @default.
- W2964293248 cites W2166410137 @default.
- W2964293248 cites W2167212630 @default.
- W2964293248 cites W2173079655 @default.
- W2964293248 cites W2181369748 @default.
- W2964293248 cites W2189911347 @default.
- W2964293248 cites W2225235469 @default.
- W2964293248 cites W2263739890 @default.
- W2964293248 cites W2269909407 @default.
- W2964293248 cites W2294017771 @default.
- W2964293248 cites W2336040088 @default.
- W2964293248 cites W2344452099 @default.
- W2964293248 cites W2403565049 @default.
- W2964293248 cites W2405383071 @default.
- W2964293248 cites W2442828641 @default.
- W2964293248 cites W2521450174 @default.
- W2964293248 cites W2529240220 @default.
- W2964293248 cites W2529560299 @default.
- W2964293248 cites W2581082771 @default.
- W2964293248 cites W2660853336 @default.
- W2964293248 cites W2745929478 @default.
- W2964293248 cites W2919115771 @default.