Matches in SemOpenAlex for { <https://semopenalex.org/work/W2964293810> ?p ?o ?g. }
- W2964293810 abstract "This paper introduces a new maximum likelihood (ML) solution for the code-aided (CA) timing recovery problem in square-quadrature amplitude modulation (QAM) transmissions and derives, for the very first time, its CA Cramer–Rao lower bounds (CRLBs) in closed-form expressions. The channel is assumed to be slowly time varying so that it can be considered as constant over the observation interval. By exploiting the full symmetry of square-QAM constellations and further scrutinizing the Gray-coding mechanism, we express the likelihood function of the system explicitly in terms of the code bits’ a priori log-likelihood ratios (LLRs). The timing recovery task is then embedded in the turbo iteration loop, wherein increasingly accurate estimates for such LLRs are computed from the output of the soft-input soft-output decoders and exploited at a per-turbo-iteration basis in order to refine the ML time delay estimate. The latter is then used to better resynchronize the system, through feedback to the matched filter, so as to obtain more reliable symbol-rate samples for the next turbo iteration. In order to properly benchmark the new CA ML estimator, we also derive for the very first time the closed-form expressions for the exact CRLBs of the underlying turbo synchronization problem. Computer simulations will show that the new closed-form CRLBs coincide exactly with their empirical counterparts evaluated previously using exhaustive Monte Carlo simulations. They will also show unambiguously the remarkable performance improvements of CA estimation against the traditional nondata-aided scheme, thereby highlighting the potential performance gains in time synchronization that can be achieved owing to the decoder assistance. Over a wide range of practical signal-to-noise ratios (SNRs), CA estimation becomes even equivalent to the completely data-aided scheme in which all the transmitted symbols are perfectly known to the receiver. Moreover, the new CA ML estimator almost reaches the underlying CA CRLBs, even for small SNRs, thereby confirming its statistical efficiency in practice. It also enjoys significant improvements in computational complexity as compared to the most powerful existing ML solution, namely the combined sum-product and expectation-maximization algorithm." @default.
- W2964293810 created "2019-07-30" @default.
- W2964293810 creator A5000502403 @default.
- W2964293810 creator A5003619912 @default.
- W2964293810 creator A5060799972 @default.
- W2964293810 creator A5070888928 @default.
- W2964293810 creator A5076850812 @default.
- W2964293810 date "2017-12-01" @default.
- W2964293810 modified "2023-10-18" @default.
- W2964293810 title "Time Synchronization of Turbo-Coded Square-QAM-Modulated Transmissions: Code-Aided ML Estimator and Closed-Form Cramér–Rao Lower Bounds" @default.
- W2964293810 cites W1562979145 @default.
- W2964293810 cites W1965392255 @default.
- W2964293810 cites W1987255398 @default.
- W2964293810 cites W1987405322 @default.
- W2964293810 cites W1998847100 @default.
- W2964293810 cites W1999485945 @default.
- W2964293810 cites W2045407304 @default.
- W2964293810 cites W2046091144 @default.
- W2964293810 cites W2046131986 @default.
- W2964293810 cites W2079071732 @default.
- W2964293810 cites W2084883233 @default.
- W2964293810 cites W2091411446 @default.
- W2964293810 cites W2092430476 @default.
- W2964293810 cites W2094432258 @default.
- W2964293810 cites W2100071415 @default.
- W2964293810 cites W2103156253 @default.
- W2964293810 cites W2104208570 @default.
- W2964293810 cites W2107888069 @default.
- W2964293810 cites W2108700799 @default.
- W2964293810 cites W2109802757 @default.
- W2964293810 cites W2113664619 @default.
- W2964293810 cites W2114308522 @default.
- W2964293810 cites W2115755118 @default.
- W2964293810 cites W2116163033 @default.
- W2964293810 cites W2116731229 @default.
- W2964293810 cites W2117214867 @default.
- W2964293810 cites W2127475735 @default.
- W2964293810 cites W2127490352 @default.
- W2964293810 cites W2130815362 @default.
- W2964293810 cites W2135698162 @default.
- W2964293810 cites W2141310001 @default.
- W2964293810 cites W2142224273 @default.
- W2964293810 cites W2142247420 @default.
- W2964293810 cites W2148342136 @default.
- W2964293810 cites W2151590659 @default.
- W2964293810 cites W2156275996 @default.
- W2964293810 cites W2159380632 @default.
- W2964293810 cites W2168938390 @default.
- W2964293810 cites W2169671545 @default.
- W2964293810 doi "https://doi.org/10.1109/tvt.2017.2721446" @default.
- W2964293810 hasPublicationYear "2017" @default.
- W2964293810 type Work @default.
- W2964293810 sameAs 2964293810 @default.
- W2964293810 citedByCount "5" @default.
- W2964293810 countsByYear W29642938102018 @default.
- W2964293810 countsByYear W29642938102019 @default.
- W2964293810 crossrefType "journal-article" @default.
- W2964293810 hasAuthorship W2964293810A5000502403 @default.
- W2964293810 hasAuthorship W2964293810A5003619912 @default.
- W2964293810 hasAuthorship W2964293810A5060799972 @default.
- W2964293810 hasAuthorship W2964293810A5070888928 @default.
- W2964293810 hasAuthorship W2964293810A5076850812 @default.
- W2964293810 hasBestOaLocation W29642938102 @default.
- W2964293810 hasConcept C105795698 @default.
- W2964293810 hasConcept C11413529 @default.
- W2964293810 hasConcept C114504821 @default.
- W2964293810 hasConcept C127413603 @default.
- W2964293810 hasConcept C167928553 @default.
- W2964293810 hasConcept C171146098 @default.
- W2964293810 hasConcept C185429906 @default.
- W2964293810 hasConcept C2776240298 @default.
- W2964293810 hasConcept C32409245 @default.
- W2964293810 hasConcept C33923547 @default.
- W2964293810 hasConcept C41008148 @default.
- W2964293810 hasConcept C4978587 @default.
- W2964293810 hasConcept C56296756 @default.
- W2964293810 hasConcept C57273362 @default.
- W2964293810 hasConcept C59030546 @default.
- W2964293810 hasConceptScore W2964293810C105795698 @default.
- W2964293810 hasConceptScore W2964293810C11413529 @default.
- W2964293810 hasConceptScore W2964293810C114504821 @default.
- W2964293810 hasConceptScore W2964293810C127413603 @default.
- W2964293810 hasConceptScore W2964293810C167928553 @default.
- W2964293810 hasConceptScore W2964293810C171146098 @default.
- W2964293810 hasConceptScore W2964293810C185429906 @default.
- W2964293810 hasConceptScore W2964293810C2776240298 @default.
- W2964293810 hasConceptScore W2964293810C32409245 @default.
- W2964293810 hasConceptScore W2964293810C33923547 @default.
- W2964293810 hasConceptScore W2964293810C41008148 @default.
- W2964293810 hasConceptScore W2964293810C4978587 @default.
- W2964293810 hasConceptScore W2964293810C56296756 @default.
- W2964293810 hasConceptScore W2964293810C57273362 @default.
- W2964293810 hasConceptScore W2964293810C59030546 @default.
- W2964293810 hasFunder F4320334593 @default.
- W2964293810 hasLocation W29642938101 @default.
- W2964293810 hasLocation W29642938102 @default.
- W2964293810 hasOpenAccess W2964293810 @default.
- W2964293810 hasPrimaryLocation W29642938101 @default.
- W2964293810 hasRelatedWork W1014074765 @default.
- W2964293810 hasRelatedWork W1953299273 @default.