Matches in SemOpenAlex for { <https://semopenalex.org/work/W2964294029> ?p ?o ?g. }
- W2964294029 endingPage "106682" @default.
- W2964294029 startingPage "106682" @default.
- W2964294029 abstract "The early and accurate detection of rolling element bearing faults, which is closely linked to the timely maintenance and repair before a sudden breakdown, is still one of the key challenges in the area of condition monitoring. Nowadays in the frames of research advanced signal processing techniques are combined with high level machine learning approaches, focusing towards automatic fault diagnosis and decision making. A plethora of Health Indicators (HIs) have been proposed to feed in machine learning models in orderto track the system degradation. Cyclic Spectral Analysis (CSA), including Cyclic Spectral Correlation (CSC) and Cyclic Spectral Coherence (CSCoh), has been proved as a powerful tool for rotating machinery fault detection. Due to the periodic mechanism of bearing fault impacts, the HIs extracted from the Cyclostationary (CS) domain can detect bearing defects even in premature stage. On the other hand, supervised machine learning approaches with labelled training and testing datasets cannot be yet realistically applied in industrial applications. In order to overcome this limitation, a novel semi-supervised Support Vector Data Description (SVDD) with negative samples (NSVDD) fault detection approach is proposed in this paper. The NSVDD model utilizes CS indicators to build the feature space, and fits a hyper-sphere to calculate the Euclidean distances in order to isolate the healthy and faulty data. An uniform object generation method is adopted to generate artificial outliers as negative samples for the NSVDD. A systematic fault detection decision strategy is proposed to estimate the bearing status simultaneously with the detection of fault initiation. Furthermore, a multi-level anomaly detection framework is built based on data at i) single sensor level, ii) machine level and iii) entire machine fleet level. Three run-to-failure bearing datasets including signals from twelve bearings are used to implement the proposed fault detection methodology. Results show that, the CS based indicators outperform time indicators and Fast Kurtogram (FK) based Squared Envelope Spectrum (SES) indicators. Moreover, the proposed NSVDD model show superior characteristics in anomaly detection compared to three classification methodologies, i.e. the Back-Propagation Neural Network, the Random Forest and the K-Nearest Neighbour." @default.
- W2964294029 created "2019-07-30" @default.
- W2964294029 creator A5064430862 @default.
- W2964294029 creator A5064722162 @default.
- W2964294029 date "2020-06-01" @default.
- W2964294029 modified "2023-10-16" @default.
- W2964294029 title "A semi-supervised Support Vector Data Description-based fault detection method for rolling element bearings based on cyclic spectral analysis" @default.
- W2964294029 cites W1964511482 @default.
- W2964294029 cites W1966100433 @default.
- W2964294029 cites W1970088130 @default.
- W2964294029 cites W1970166607 @default.
- W2964294029 cites W1977020076 @default.
- W2964294029 cites W1978670814 @default.
- W2964294029 cites W1985110006 @default.
- W2964294029 cites W2019505419 @default.
- W2964294029 cites W2027176154 @default.
- W2964294029 cites W2028328787 @default.
- W2964294029 cites W2037411704 @default.
- W2964294029 cites W2049810669 @default.
- W2964294029 cites W2069962935 @default.
- W2964294029 cites W2100294832 @default.
- W2964294029 cites W2171293513 @default.
- W2964294029 cites W262300925 @default.
- W2964294029 cites W2791139105 @default.
- W2964294029 cites W2884839720 @default.
- W2964294029 cites W2902036888 @default.
- W2964294029 cites W2916253125 @default.
- W2964294029 cites W4233350029 @default.
- W2964294029 cites W4233942849 @default.
- W2964294029 doi "https://doi.org/10.1016/j.ymssp.2020.106682" @default.
- W2964294029 hasPublicationYear "2020" @default.
- W2964294029 type Work @default.
- W2964294029 sameAs 2964294029 @default.
- W2964294029 citedByCount "59" @default.
- W2964294029 countsByYear W29642940292020 @default.
- W2964294029 countsByYear W29642940292021 @default.
- W2964294029 countsByYear W29642940292022 @default.
- W2964294029 countsByYear W29642940292023 @default.
- W2964294029 crossrefType "journal-article" @default.
- W2964294029 hasAuthorship W2964294029A5064430862 @default.
- W2964294029 hasAuthorship W2964294029A5064722162 @default.
- W2964294029 hasBestOaLocation W29642940292 @default.
- W2964294029 hasConcept C101738243 @default.
- W2964294029 hasConcept C108583219 @default.
- W2964294029 hasConcept C119599485 @default.
- W2964294029 hasConcept C121332964 @default.
- W2964294029 hasConcept C12267149 @default.
- W2964294029 hasConcept C124101348 @default.
- W2964294029 hasConcept C127162648 @default.
- W2964294029 hasConcept C127313418 @default.
- W2964294029 hasConcept C127413603 @default.
- W2964294029 hasConcept C152745839 @default.
- W2964294029 hasConcept C153180895 @default.
- W2964294029 hasConcept C154945302 @default.
- W2964294029 hasConcept C165205528 @default.
- W2964294029 hasConcept C172707124 @default.
- W2964294029 hasConcept C175551986 @default.
- W2964294029 hasConcept C178351263 @default.
- W2964294029 hasConcept C198394728 @default.
- W2964294029 hasConcept C199978012 @default.
- W2964294029 hasConcept C2775846686 @default.
- W2964294029 hasConcept C2780155820 @default.
- W2964294029 hasConcept C31258907 @default.
- W2964294029 hasConcept C41008148 @default.
- W2964294029 hasConcept C62520636 @default.
- W2964294029 hasConcept C739882 @default.
- W2964294029 hasConcept C83665646 @default.
- W2964294029 hasConceptScore W2964294029C101738243 @default.
- W2964294029 hasConceptScore W2964294029C108583219 @default.
- W2964294029 hasConceptScore W2964294029C119599485 @default.
- W2964294029 hasConceptScore W2964294029C121332964 @default.
- W2964294029 hasConceptScore W2964294029C12267149 @default.
- W2964294029 hasConceptScore W2964294029C124101348 @default.
- W2964294029 hasConceptScore W2964294029C127162648 @default.
- W2964294029 hasConceptScore W2964294029C127313418 @default.
- W2964294029 hasConceptScore W2964294029C127413603 @default.
- W2964294029 hasConceptScore W2964294029C152745839 @default.
- W2964294029 hasConceptScore W2964294029C153180895 @default.
- W2964294029 hasConceptScore W2964294029C154945302 @default.
- W2964294029 hasConceptScore W2964294029C165205528 @default.
- W2964294029 hasConceptScore W2964294029C172707124 @default.
- W2964294029 hasConceptScore W2964294029C175551986 @default.
- W2964294029 hasConceptScore W2964294029C178351263 @default.
- W2964294029 hasConceptScore W2964294029C198394728 @default.
- W2964294029 hasConceptScore W2964294029C199978012 @default.
- W2964294029 hasConceptScore W2964294029C2775846686 @default.
- W2964294029 hasConceptScore W2964294029C2780155820 @default.
- W2964294029 hasConceptScore W2964294029C31258907 @default.
- W2964294029 hasConceptScore W2964294029C41008148 @default.
- W2964294029 hasConceptScore W2964294029C62520636 @default.
- W2964294029 hasConceptScore W2964294029C739882 @default.
- W2964294029 hasConceptScore W2964294029C83665646 @default.
- W2964294029 hasFunder F4320322725 @default.
- W2964294029 hasLocation W29642940291 @default.
- W2964294029 hasLocation W29642940292 @default.
- W2964294029 hasLocation W29642940293 @default.
- W2964294029 hasOpenAccess W2964294029 @default.
- W2964294029 hasPrimaryLocation W29642940291 @default.