Matches in SemOpenAlex for { <https://semopenalex.org/work/W2964299871> ?p ?o ?g. }
Showing items 1 to 100 of
100
with 100 items per page.
- W2964299871 endingPage "649" @default.
- W2964299871 startingPage "621" @default.
- W2964299871 abstract "Approximation of elliptic PDEs with random diffusion coefficients typically requires a representation of the diffusion field in terms of a sequence $$y=(y_j)_{jge 1}$$ of scalar random variables. One may then apply high-dimensional approximation methods to the solution map $$ymapsto u(y)$$ . Although Karhunen–Loève representations are commonly used, it was recently shown, in the relevant case of lognormal diffusion fields, that multilevel-type expansions may yield better approximation rates. Motivated by these results, we construct wavelet-type representations of stationary Gaussian random fields defined on arbitrary bounded domains. The size and localization properties of these wavelets are studied, and used to obtain polynomial approximation results for the related elliptic PDE which outperform those achievable when using Karhunen–Loève representations. Our construction is based on a periodic extension of the stationary random field, and the expansion on the domain is then obtained by simple restriction. This makes the approach easily applicable even when the computational domain of the PDE has a complicated geometry. In particular, we apply this construction to the class of Gaussian processes defined by the family of Matérn covariances. The proposed periodic continuation technique has other relevant applications such as fast simulation of trajectories. It can be regarded as a continuous analog of circulant embedding techniques introduced for Toeplitz matrices. One of its specific features is that the rate of decay of the eigenvalues of the covariance operator of the periodized process provably matches that of the Fourier transform of the covariance function of the original process." @default.
- W2964299871 created "2019-07-30" @default.
- W2964299871 creator A5017726844 @default.
- W2964299871 creator A5059030374 @default.
- W2964299871 creator A5063162788 @default.
- W2964299871 date "2017-03-29" @default.
- W2964299871 modified "2023-10-18" @default.
- W2964299871 title "Representations of Gaussian Random Fields and Approximation of Elliptic PDEs with Lognormal Coefficients" @default.
- W2964299871 cites W1966606705 @default.
- W2964299871 cites W1984604835 @default.
- W2964299871 cites W1986280275 @default.
- W2964299871 cites W2008058003 @default.
- W2964299871 cites W2026237857 @default.
- W2964299871 cites W2051344283 @default.
- W2964299871 cites W2052271668 @default.
- W2964299871 cites W2067111814 @default.
- W2964299871 cites W2072282162 @default.
- W2964299871 cites W2079559649 @default.
- W2964299871 cites W2080348404 @default.
- W2964299871 cites W2115125420 @default.
- W2964299871 cites W2170826679 @default.
- W2964299871 cites W2962840746 @default.
- W2964299871 cites W2963062618 @default.
- W2964299871 cites W2995924920 @default.
- W2964299871 cites W3102030002 @default.
- W2964299871 cites W4231428347 @default.
- W2964299871 cites W4255272544 @default.
- W2964299871 cites W624584418 @default.
- W2964299871 cites W835076124 @default.
- W2964299871 doi "https://doi.org/10.1007/s00041-017-9539-5" @default.
- W2964299871 hasPublicationYear "2017" @default.
- W2964299871 type Work @default.
- W2964299871 sameAs 2964299871 @default.
- W2964299871 citedByCount "20" @default.
- W2964299871 countsByYear W29642998712018 @default.
- W2964299871 countsByYear W29642998712019 @default.
- W2964299871 countsByYear W29642998712020 @default.
- W2964299871 countsByYear W29642998712021 @default.
- W2964299871 countsByYear W29642998712022 @default.
- W2964299871 countsByYear W29642998712023 @default.
- W2964299871 crossrefType "journal-article" @default.
- W2964299871 hasAuthorship W2964299871A5017726844 @default.
- W2964299871 hasAuthorship W2964299871A5059030374 @default.
- W2964299871 hasAuthorship W2964299871A5063162788 @default.
- W2964299871 hasBestOaLocation W29642998712 @default.
- W2964299871 hasConcept C105795698 @default.
- W2964299871 hasConcept C121332964 @default.
- W2964299871 hasConcept C130402806 @default.
- W2964299871 hasConcept C134306372 @default.
- W2964299871 hasConcept C137250428 @default.
- W2964299871 hasConcept C154945302 @default.
- W2964299871 hasConcept C163716315 @default.
- W2964299871 hasConcept C178650346 @default.
- W2964299871 hasConcept C28826006 @default.
- W2964299871 hasConcept C33923547 @default.
- W2964299871 hasConcept C41008148 @default.
- W2964299871 hasConcept C47432892 @default.
- W2964299871 hasConcept C51267290 @default.
- W2964299871 hasConcept C61326573 @default.
- W2964299871 hasConcept C62520636 @default.
- W2964299871 hasConceptScore W2964299871C105795698 @default.
- W2964299871 hasConceptScore W2964299871C121332964 @default.
- W2964299871 hasConceptScore W2964299871C130402806 @default.
- W2964299871 hasConceptScore W2964299871C134306372 @default.
- W2964299871 hasConceptScore W2964299871C137250428 @default.
- W2964299871 hasConceptScore W2964299871C154945302 @default.
- W2964299871 hasConceptScore W2964299871C163716315 @default.
- W2964299871 hasConceptScore W2964299871C178650346 @default.
- W2964299871 hasConceptScore W2964299871C28826006 @default.
- W2964299871 hasConceptScore W2964299871C33923547 @default.
- W2964299871 hasConceptScore W2964299871C41008148 @default.
- W2964299871 hasConceptScore W2964299871C47432892 @default.
- W2964299871 hasConceptScore W2964299871C51267290 @default.
- W2964299871 hasConceptScore W2964299871C61326573 @default.
- W2964299871 hasConceptScore W2964299871C62520636 @default.
- W2964299871 hasIssue "3" @default.
- W2964299871 hasLocation W29642998711 @default.
- W2964299871 hasLocation W29642998712 @default.
- W2964299871 hasLocation W29642998713 @default.
- W2964299871 hasLocation W29642998714 @default.
- W2964299871 hasLocation W29642998715 @default.
- W2964299871 hasOpenAccess W2964299871 @default.
- W2964299871 hasPrimaryLocation W29642998711 @default.
- W2964299871 hasRelatedWork W1541863749 @default.
- W2964299871 hasRelatedWork W2069407179 @default.
- W2964299871 hasRelatedWork W2599475653 @default.
- W2964299871 hasRelatedWork W3002473118 @default.
- W2964299871 hasRelatedWork W3103935687 @default.
- W2964299871 hasRelatedWork W4226291750 @default.
- W2964299871 hasRelatedWork W4286883315 @default.
- W2964299871 hasRelatedWork W4289785401 @default.
- W2964299871 hasRelatedWork W4308948991 @default.
- W2964299871 hasRelatedWork W4380083022 @default.
- W2964299871 hasVolume "24" @default.
- W2964299871 isParatext "false" @default.
- W2964299871 isRetracted "false" @default.
- W2964299871 magId "2964299871" @default.
- W2964299871 workType "article" @default.