Matches in SemOpenAlex for { <https://semopenalex.org/work/W2964300492> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W2964300492 endingPage "559" @default.
- W2964300492 startingPage "556" @default.
- W2964300492 abstract "During time-critical situations such as natural disasters, rapid classification of data posted on social networks by affected people is useful for humanitarian organizations to gain situational awareness and to plan response efforts. However, the scarcity of labeled data in the early hours of a crisis hinders machine learning tasks thus delays crisis response. In this work, we propose to use an inductive semi-supervised technique to utilize unlabeled data, which is often abundant at the onset of a crisis event, along with fewer labeled data. Specif- ically, we adopt a graph-based deep learning framework to learn an inductive semi-supervised model. We use two real-world crisis datasets from Twitter to evaluate the proposed approach. Our results show significant improvements using unlabeled data as compared to only using labeled data." @default.
- W2964300492 created "2019-07-30" @default.
- W2964300492 creator A5005443526 @default.
- W2964300492 creator A5021572071 @default.
- W2964300492 creator A5053436179 @default.
- W2964300492 date "2018-01-01" @default.
- W2964300492 modified "2023-09-27" @default.
- W2964300492 title "Graph Based Semi-supervised Learning with Convolution Neural Networks to Classify Crisis Related Tweets" @default.
- W2964300492 hasPublicationYear "2018" @default.
- W2964300492 type Work @default.
- W2964300492 sameAs 2964300492 @default.
- W2964300492 citedByCount "9" @default.
- W2964300492 countsByYear W29643004922019 @default.
- W2964300492 countsByYear W29643004922020 @default.
- W2964300492 countsByYear W29643004922021 @default.
- W2964300492 countsByYear W29643004922022 @default.
- W2964300492 crossrefType "proceedings-article" @default.
- W2964300492 hasAuthorship W2964300492A5005443526 @default.
- W2964300492 hasAuthorship W2964300492A5021572071 @default.
- W2964300492 hasAuthorship W2964300492A5053436179 @default.
- W2964300492 hasConcept C108583219 @default.
- W2964300492 hasConcept C119857082 @default.
- W2964300492 hasConcept C127413603 @default.
- W2964300492 hasConcept C132525143 @default.
- W2964300492 hasConcept C136389625 @default.
- W2964300492 hasConcept C136764020 @default.
- W2964300492 hasConcept C145804949 @default.
- W2964300492 hasConcept C146978453 @default.
- W2964300492 hasConcept C154945302 @default.
- W2964300492 hasConcept C2776145971 @default.
- W2964300492 hasConcept C41008148 @default.
- W2964300492 hasConcept C50644808 @default.
- W2964300492 hasConcept C518677369 @default.
- W2964300492 hasConcept C58973888 @default.
- W2964300492 hasConcept C80444323 @default.
- W2964300492 hasConcept C81363708 @default.
- W2964300492 hasConceptScore W2964300492C108583219 @default.
- W2964300492 hasConceptScore W2964300492C119857082 @default.
- W2964300492 hasConceptScore W2964300492C127413603 @default.
- W2964300492 hasConceptScore W2964300492C132525143 @default.
- W2964300492 hasConceptScore W2964300492C136389625 @default.
- W2964300492 hasConceptScore W2964300492C136764020 @default.
- W2964300492 hasConceptScore W2964300492C145804949 @default.
- W2964300492 hasConceptScore W2964300492C146978453 @default.
- W2964300492 hasConceptScore W2964300492C154945302 @default.
- W2964300492 hasConceptScore W2964300492C2776145971 @default.
- W2964300492 hasConceptScore W2964300492C41008148 @default.
- W2964300492 hasConceptScore W2964300492C50644808 @default.
- W2964300492 hasConceptScore W2964300492C518677369 @default.
- W2964300492 hasConceptScore W2964300492C58973888 @default.
- W2964300492 hasConceptScore W2964300492C80444323 @default.
- W2964300492 hasConceptScore W2964300492C81363708 @default.
- W2964300492 hasLocation W29643004921 @default.
- W2964300492 hasOpenAccess W2964300492 @default.
- W2964300492 hasPrimaryLocation W29643004921 @default.
- W2964300492 hasRelatedWork W1934362406 @default.
- W2964300492 hasRelatedWork W2511201422 @default.
- W2964300492 hasRelatedWork W2604444602 @default.
- W2964300492 hasRelatedWork W2768447691 @default.
- W2964300492 hasRelatedWork W2788509344 @default.
- W2964300492 hasRelatedWork W2804079529 @default.
- W2964300492 hasRelatedWork W2809669277 @default.
- W2964300492 hasRelatedWork W2907464027 @default.
- W2964300492 hasRelatedWork W2920828800 @default.
- W2964300492 hasRelatedWork W2927125710 @default.
- W2964300492 hasRelatedWork W2962707464 @default.
- W2964300492 hasRelatedWork W2963025814 @default.
- W2964300492 hasRelatedWork W3008319555 @default.
- W2964300492 hasRelatedWork W3011474921 @default.
- W2964300492 hasRelatedWork W3022146783 @default.
- W2964300492 hasRelatedWork W3037247064 @default.
- W2964300492 hasRelatedWork W3093561817 @default.
- W2964300492 hasRelatedWork W3099025572 @default.
- W2964300492 hasRelatedWork W3162766389 @default.
- W2964300492 hasRelatedWork W822069289 @default.
- W2964300492 isParatext "false" @default.
- W2964300492 isRetracted "false" @default.
- W2964300492 magId "2964300492" @default.
- W2964300492 workType "article" @default.