Matches in SemOpenAlex for { <https://semopenalex.org/work/W2964303311> ?p ?o ?g. }
- W2964303311 abstract "We study the asymptotic behaviour of Betti numbers, twisted torsion and other spectral invariants of sequences of locally symmetric spaces. Our main results are uniform versions of the DeGeorge–Wallach Theorem, of a theorem of Delorme and various other limit multiplicity theorems. A basic idea is to adapt the notion of Benjamini–Schramm convergence (BS-convergence), originally introduced for sequences of finite graphs of bounded degree, to sequences of Riemannian manifolds, and analyze the possible limits. We show that BS-convergence of locally symmetric spaces ΓG/K implies convergence, in an appropriate sense, of the normalized relative Plancherel measures associated to L 2 (ΓG). This then yields convergence of normalized multiplicities of unitary representations, Betti numbers and other spectral in-variants. On the other hand, when the corresponding Lie group G is simple and of real rank at least two, we prove that there is only one possible BS-limit, i.e. when the volume tends to infinity, locally symmetric spaces always BS-converge to their universal cover G/K. This leads to various general uniform results. When restricting to arbitrary sequences of congruence covers of a fixed arithmetic manifold we prove a strong quantitative version of BS-convergence which in turn implies upper estimates on the rate of convergence of normalized Betti numbers in the spirit of Sarnak–Xue. An important role in our approach is played by the notion of Invariant Random Subgroups. For higher rank simple Lie groups G, we exploit rigidity theory, and in particular the Nevo–Stuck–Zimmer theorem and Kazhdan's property (T), to obtain a complete understanding of the space of IRSs of G." @default.
- W2964303311 created "2019-07-30" @default.
- W2964303311 creator A5003620511 @default.
- W2964303311 creator A5011226645 @default.
- W2964303311 creator A5050815174 @default.
- W2964303311 creator A5062916788 @default.
- W2964303311 creator A5088096431 @default.
- W2964303311 creator A5089550903 @default.
- W2964303311 creator A5090415354 @default.
- W2964303311 date "2017-05-01" @default.
- W2964303311 modified "2023-10-14" @default.
- W2964303311 title "On the growth of $L^2$-invariants for sequences of lattices in Lie groups" @default.
- W2964303311 cites W1022822564 @default.
- W2964303311 cites W1502013424 @default.
- W2964303311 cites W1518824415 @default.
- W2964303311 cites W1539382740 @default.
- W2964303311 cites W1540768731 @default.
- W2964303311 cites W1570658674 @default.
- W2964303311 cites W1572772830 @default.
- W2964303311 cites W1589310148 @default.
- W2964303311 cites W1593345482 @default.
- W2964303311 cites W1599163056 @default.
- W2964303311 cites W1832318961 @default.
- W2964303311 cites W1870973791 @default.
- W2964303311 cites W1972658570 @default.
- W2964303311 cites W1978712663 @default.
- W2964303311 cites W1978820913 @default.
- W2964303311 cites W1985551666 @default.
- W2964303311 cites W1986273152 @default.
- W2964303311 cites W1999011595 @default.
- W2964303311 cites W2002322360 @default.
- W2964303311 cites W2006977414 @default.
- W2964303311 cites W2009398469 @default.
- W2964303311 cites W2022883370 @default.
- W2964303311 cites W2028489833 @default.
- W2964303311 cites W2030939876 @default.
- W2964303311 cites W2032868343 @default.
- W2964303311 cites W2038918517 @default.
- W2964303311 cites W2040535548 @default.
- W2964303311 cites W2044420299 @default.
- W2964303311 cites W2047750209 @default.
- W2964303311 cites W2050935361 @default.
- W2964303311 cites W2051434223 @default.
- W2964303311 cites W2052340492 @default.
- W2964303311 cites W2057918448 @default.
- W2964303311 cites W2057980241 @default.
- W2964303311 cites W2059536492 @default.
- W2964303311 cites W2061962965 @default.
- W2964303311 cites W2063290006 @default.
- W2964303311 cites W2063560306 @default.
- W2964303311 cites W2067868684 @default.
- W2964303311 cites W2068801641 @default.
- W2964303311 cites W2070474672 @default.
- W2964303311 cites W2078444023 @default.
- W2964303311 cites W2086825299 @default.
- W2964303311 cites W2093667193 @default.
- W2964303311 cites W2097308425 @default.
- W2964303311 cites W2099762906 @default.
- W2964303311 cites W2104948016 @default.
- W2964303311 cites W2107501402 @default.
- W2964303311 cites W2110596924 @default.
- W2964303311 cites W2113364244 @default.
- W2964303311 cites W2136900959 @default.
- W2964303311 cites W2139841166 @default.
- W2964303311 cites W2165114349 @default.
- W2964303311 cites W2197548015 @default.
- W2964303311 cites W2320625449 @default.
- W2964303311 cites W2321597728 @default.
- W2964303311 cites W2334412134 @default.
- W2964303311 cites W2583339016 @default.
- W2964303311 cites W2609655032 @default.
- W2964303311 cites W2914546331 @default.
- W2964303311 cites W2951628933 @default.
- W2964303311 cites W2962805556 @default.
- W2964303311 cites W2963064627 @default.
- W2964303311 cites W2963112304 @default.
- W2964303311 cites W2963224715 @default.
- W2964303311 cites W2963260686 @default.
- W2964303311 cites W2963347829 @default.
- W2964303311 cites W2963390020 @default.
- W2964303311 cites W2963479470 @default.
- W2964303311 cites W2963659437 @default.
- W2964303311 cites W2963869043 @default.
- W2964303311 cites W3100738199 @default.
- W2964303311 cites W3101583560 @default.
- W2964303311 cites W3102837920 @default.
- W2964303311 cites W3105749869 @default.
- W2964303311 cites W3122121315 @default.
- W2964303311 cites W4206373830 @default.
- W2964303311 cites W4213195349 @default.
- W2964303311 cites W4241306899 @default.
- W2964303311 cites W4251129402 @default.
- W2964303311 cites W4252491074 @default.
- W2964303311 cites W4254523572 @default.
- W2964303311 cites W4255267539 @default.
- W2964303311 cites W4255662172 @default.
- W2964303311 cites W880351828 @default.
- W2964303311 doi "https://doi.org/10.4007/annals.2017.185.3.1" @default.
- W2964303311 hasPublicationYear "2017" @default.
- W2964303311 type Work @default.