Matches in SemOpenAlex for { <https://semopenalex.org/work/W2964304846> ?p ?o ?g. }
Showing items 1 to 80 of
80
with 100 items per page.
- W2964304846 abstract "Deep learning has recently demonstrated state-of-the art performance on key tasks related to the maintenance of computer systems, such as intrusion detection, denial of service attack detection, hardware and software system failures, and malware detection. In these contexts, model interpretability is vital for administrator and analyst to trust and act on the automated analysis of machine learning models. Deep learning methods have been criticized as black box oracles which allow limited insight into decision factors. In this work we seek to bridge the gap between the impressive performance of deep learning models and the need for interpretable model introspection. To this end we present recurrent neural network (RNN) language models augmented with attention for anomaly detection in system logs. Our methods are generally applicable to any computer system and logging source. By incorporating attention variants into our RNN language models we create opportunities for model introspection and analysis without sacrificing state-of-the art performance. We demonstrate model performance and illustrate model interpretability on an intrusion detection task using the Los Alamos National Laboratory (LANL) cyber security dataset, reporting upward of 0.99 area under the receiver operator characteristic curve despite being trained only on a single day's worth of data." @default.
- W2964304846 created "2019-07-30" @default.
- W2964304846 creator A5033912251 @default.
- W2964304846 creator A5039959819 @default.
- W2964304846 creator A5063669518 @default.
- W2964304846 creator A5075234282 @default.
- W2964304846 date "2018-06-12" @default.
- W2964304846 modified "2023-10-16" @default.
- W2964304846 title "Recurrent Neural Network Attention Mechanisms for Interpretable System Log Anomaly Detection" @default.
- W2964304846 cites W1545528966 @default.
- W2964304846 cites W1902237438 @default.
- W2964304846 cites W2064675550 @default.
- W2964304846 cites W2089468765 @default.
- W2964304846 cites W2476891002 @default.
- W2964304846 cites W2557671501 @default.
- W2964304846 cites W2585367509 @default.
- W2964304846 cites W2767094836 @default.
- W2964304846 doi "https://doi.org/10.1145/3217871.3217872" @default.
- W2964304846 hasPublicationYear "2018" @default.
- W2964304846 type Work @default.
- W2964304846 sameAs 2964304846 @default.
- W2964304846 citedByCount "125" @default.
- W2964304846 countsByYear W29643048462018 @default.
- W2964304846 countsByYear W29643048462019 @default.
- W2964304846 countsByYear W29643048462020 @default.
- W2964304846 countsByYear W29643048462021 @default.
- W2964304846 countsByYear W29643048462022 @default.
- W2964304846 countsByYear W29643048462023 @default.
- W2964304846 crossrefType "proceedings-article" @default.
- W2964304846 hasAuthorship W2964304846A5033912251 @default.
- W2964304846 hasAuthorship W2964304846A5039959819 @default.
- W2964304846 hasAuthorship W2964304846A5063669518 @default.
- W2964304846 hasAuthorship W2964304846A5075234282 @default.
- W2964304846 hasBestOaLocation W29643048462 @default.
- W2964304846 hasConcept C108583219 @default.
- W2964304846 hasConcept C119857082 @default.
- W2964304846 hasConcept C147168706 @default.
- W2964304846 hasConcept C149810388 @default.
- W2964304846 hasConcept C154945302 @default.
- W2964304846 hasConcept C162324750 @default.
- W2964304846 hasConcept C2781067378 @default.
- W2964304846 hasConcept C35525427 @default.
- W2964304846 hasConcept C38652104 @default.
- W2964304846 hasConcept C41008148 @default.
- W2964304846 hasConcept C50522688 @default.
- W2964304846 hasConcept C50644808 @default.
- W2964304846 hasConcept C541664917 @default.
- W2964304846 hasConcept C739882 @default.
- W2964304846 hasConceptScore W2964304846C108583219 @default.
- W2964304846 hasConceptScore W2964304846C119857082 @default.
- W2964304846 hasConceptScore W2964304846C147168706 @default.
- W2964304846 hasConceptScore W2964304846C149810388 @default.
- W2964304846 hasConceptScore W2964304846C154945302 @default.
- W2964304846 hasConceptScore W2964304846C162324750 @default.
- W2964304846 hasConceptScore W2964304846C2781067378 @default.
- W2964304846 hasConceptScore W2964304846C35525427 @default.
- W2964304846 hasConceptScore W2964304846C38652104 @default.
- W2964304846 hasConceptScore W2964304846C41008148 @default.
- W2964304846 hasConceptScore W2964304846C50522688 @default.
- W2964304846 hasConceptScore W2964304846C50644808 @default.
- W2964304846 hasConceptScore W2964304846C541664917 @default.
- W2964304846 hasConceptScore W2964304846C739882 @default.
- W2964304846 hasLocation W29643048461 @default.
- W2964304846 hasLocation W29643048462 @default.
- W2964304846 hasOpenAccess W2964304846 @default.
- W2964304846 hasPrimaryLocation W29643048461 @default.
- W2964304846 hasRelatedWork W2113392438 @default.
- W2964304846 hasRelatedWork W2768320620 @default.
- W2964304846 hasRelatedWork W2806259446 @default.
- W2964304846 hasRelatedWork W2905433371 @default.
- W2964304846 hasRelatedWork W4310278675 @default.
- W2964304846 hasRelatedWork W4311431240 @default.
- W2964304846 hasRelatedWork W4312407344 @default.
- W2964304846 hasRelatedWork W4361193272 @default.
- W2964304846 hasRelatedWork W4384115502 @default.
- W2964304846 hasRelatedWork W2963326959 @default.
- W2964304846 isParatext "false" @default.
- W2964304846 isRetracted "false" @default.
- W2964304846 magId "2964304846" @default.
- W2964304846 workType "article" @default.