Matches in SemOpenAlex for { <https://semopenalex.org/work/W2964307594> ?p ?o ?g. }
- W2964307594 endingPage "750" @default.
- W2964307594 startingPage "729" @default.
- W2964307594 abstract "We consider the discretization of a boundary value problem for a general linear second-order elliptic operator with smooth coefficients using the Virtual Element approach. As in [A. H. Schatz, An observation concerning Ritz–Galerkin methods with indefinite bilinear forms, Math. Comput. 28 (1974) 959–962] the problem is supposed to have a unique solution, but the associated bilinear form is not supposed to be coercive. Contrary to what was previously done for Virtual Element Methods (as for instance in [L. Beirão da Veiga, F. Brezzi, A. Cangiani, G. Manzini, L. D. Marini and A. Russo, Basic principles of virtual element methods, Math. Models Methods Appl. Sci. 23 (2013) 199–214]), we use here, in a systematic way, the [Formula: see text]-projection operators as designed in [B. Ahmad, A. Alsaedi, F. Brezzi, L. D. Marini and A. Russo, Equivalent projectors for virtual element methods, Comput. Math. Appl. 66 (2013) 376–391]. In particular, the present method does not reduce to the original Virtual Element Method of [L. Beirão da Veiga, F. Brezzi, A. Cangiani, G. Manzini, L. D. Marini and A. Russo, Basic principles of virtual element methods, Math. Models Methods Appl. Sci. 23 (2013) 199–214] for simpler problems as the classical Laplace operator (apart from the lowest-order cases). Numerical experiments show the accuracy and the robustness of the method, and they show as well that a simple-minded extension of the method in [L. Beirão da Veiga, F. Brezzi, A. Cangiani, G. Manzini, L. D. Marini and A. Russo, Basic principles of virtual element methods, Math. Models Methods Appl. Sci. 23 (2013) 199–214] to the case of variable coefficients produces, in general, sub-optimal results." @default.
- W2964307594 created "2019-07-30" @default.
- W2964307594 creator A5056593294 @default.
- W2964307594 creator A5056811351 @default.
- W2964307594 creator A5062969935 @default.
- W2964307594 creator A5073696154 @default.
- W2964307594 date "2016-02-16" @default.
- W2964307594 modified "2023-10-18" @default.
- W2964307594 title "Virtual Element Method for general second-order elliptic problems on polygonal meshes" @default.
- W2964307594 cites W162238331 @default.
- W2964307594 cites W1863866458 @default.
- W2964307594 cites W1963803848 @default.
- W2964307594 cites W1965816824 @default.
- W2964307594 cites W1986187395 @default.
- W2964307594 cites W1992923859 @default.
- W2964307594 cites W1996774337 @default.
- W2964307594 cites W1998894128 @default.
- W2964307594 cites W2001067676 @default.
- W2964307594 cites W2006000775 @default.
- W2964307594 cites W2008314323 @default.
- W2964307594 cites W2009934830 @default.
- W2964307594 cites W2022525937 @default.
- W2964307594 cites W2040595976 @default.
- W2964307594 cites W2045686441 @default.
- W2964307594 cites W2047049848 @default.
- W2964307594 cites W2051752778 @default.
- W2964307594 cites W2057105966 @default.
- W2964307594 cites W2071928229 @default.
- W2964307594 cites W2093709444 @default.
- W2964307594 cites W2097964994 @default.
- W2964307594 cites W2117496726 @default.
- W2964307594 cites W2119306252 @default.
- W2964307594 cites W2126086928 @default.
- W2964307594 cites W2126328932 @default.
- W2964307594 cites W2130763970 @default.
- W2964307594 cites W2131651508 @default.
- W2964307594 cites W2157252460 @default.
- W2964307594 cites W2168914934 @default.
- W2964307594 cites W2883313970 @default.
- W2964307594 cites W2989643232 @default.
- W2964307594 cites W3106057804 @default.
- W2964307594 cites W4240179434 @default.
- W2964307594 doi "https://doi.org/10.1142/s0218202516500160" @default.
- W2964307594 hasPublicationYear "2016" @default.
- W2964307594 type Work @default.
- W2964307594 sameAs 2964307594 @default.
- W2964307594 citedByCount "277" @default.
- W2964307594 countsByYear W29643075942014 @default.
- W2964307594 countsByYear W29643075942015 @default.
- W2964307594 countsByYear W29643075942016 @default.
- W2964307594 countsByYear W29643075942017 @default.
- W2964307594 countsByYear W29643075942018 @default.
- W2964307594 countsByYear W29643075942019 @default.
- W2964307594 countsByYear W29643075942020 @default.
- W2964307594 countsByYear W29643075942021 @default.
- W2964307594 countsByYear W29643075942022 @default.
- W2964307594 countsByYear W29643075942023 @default.
- W2964307594 crossrefType "journal-article" @default.
- W2964307594 hasAuthorship W2964307594A5056593294 @default.
- W2964307594 hasAuthorship W2964307594A5056811351 @default.
- W2964307594 hasAuthorship W2964307594A5062969935 @default.
- W2964307594 hasAuthorship W2964307594A5073696154 @default.
- W2964307594 hasConcept C104317684 @default.
- W2964307594 hasConcept C134306372 @default.
- W2964307594 hasConcept C136119220 @default.
- W2964307594 hasConcept C158448853 @default.
- W2964307594 hasConcept C17020691 @default.
- W2964307594 hasConcept C17744445 @default.
- W2964307594 hasConcept C185592680 @default.
- W2964307594 hasConcept C199343813 @default.
- W2964307594 hasConcept C199539241 @default.
- W2964307594 hasConcept C200288055 @default.
- W2964307594 hasConcept C202444582 @default.
- W2964307594 hasConcept C2777686260 @default.
- W2964307594 hasConcept C28826006 @default.
- W2964307594 hasConcept C33923547 @default.
- W2964307594 hasConcept C55493867 @default.
- W2964307594 hasConcept C71924100 @default.
- W2964307594 hasConcept C73000952 @default.
- W2964307594 hasConcept C86339819 @default.
- W2964307594 hasConceptScore W2964307594C104317684 @default.
- W2964307594 hasConceptScore W2964307594C134306372 @default.
- W2964307594 hasConceptScore W2964307594C136119220 @default.
- W2964307594 hasConceptScore W2964307594C158448853 @default.
- W2964307594 hasConceptScore W2964307594C17020691 @default.
- W2964307594 hasConceptScore W2964307594C17744445 @default.
- W2964307594 hasConceptScore W2964307594C185592680 @default.
- W2964307594 hasConceptScore W2964307594C199343813 @default.
- W2964307594 hasConceptScore W2964307594C199539241 @default.
- W2964307594 hasConceptScore W2964307594C200288055 @default.
- W2964307594 hasConceptScore W2964307594C202444582 @default.
- W2964307594 hasConceptScore W2964307594C2777686260 @default.
- W2964307594 hasConceptScore W2964307594C28826006 @default.
- W2964307594 hasConceptScore W2964307594C33923547 @default.
- W2964307594 hasConceptScore W2964307594C55493867 @default.
- W2964307594 hasConceptScore W2964307594C71924100 @default.
- W2964307594 hasConceptScore W2964307594C73000952 @default.
- W2964307594 hasConceptScore W2964307594C86339819 @default.