Matches in SemOpenAlex for { <https://semopenalex.org/work/W2964312022> ?p ?o ?g. }
- W2964312022 abstract "Kernel adaptive filters, a class of adaptive nonlinear time-series models, are known by their ability to learn expressive autoregressive patterns from sequential data. However, for trivial monotonic signals, they struggle to perform accurate predictions and at the same time keep computational complexity within desired boundaries. This is because new observations are incorporated to the dictionary when they are far from what the algorithm has seen in the past. We propose a novel approach to kernel adaptive filtering that compares new observations against dictionary samples in terms of their unit-norm (normalised) versions, meaning that new observations that look like previous samples but have a different magnitude are not added to the dictionary. We achieve this by proposing the unit-norm Gaussian kernel and define a sparsification criterion for this novel kernel. This new methodology is validated on two real-world datasets against standard KAF in terms of the normalised mean square error and the dictionary size." @default.
- W2964312022 created "2019-07-30" @default.
- W2964312022 creator A5020822083 @default.
- W2964312022 date "2017-08-01" @default.
- W2964312022 modified "2023-09-23" @default.
- W2964312022 title "Improving sparsity in kernel adaptive filters using a unit-norm dictionary" @default.
- W2964312022 cites W1492221128 @default.
- W2964312022 cites W1540164447 @default.
- W2964312022 cites W1551479102 @default.
- W2964312022 cites W1560724230 @default.
- W2964312022 cites W1647376582 @default.
- W2964312022 cites W1819447595 @default.
- W2964312022 cites W2003891054 @default.
- W2964312022 cites W2091669036 @default.
- W2964312022 cites W2098985067 @default.
- W2964312022 cites W2114865067 @default.
- W2964312022 cites W2127961257 @default.
- W2964312022 cites W2139320579 @default.
- W2964312022 cites W2153290280 @default.
- W2964312022 cites W2167932108 @default.
- W2964312022 cites W2481926318 @default.
- W2964312022 cites W2530695753 @default.
- W2964312022 cites W2535526999 @default.
- W2964312022 cites W2752286203 @default.
- W2964312022 cites W2963527399 @default.
- W2964312022 cites W2963539482 @default.
- W2964312022 doi "https://doi.org/10.1109/icdsp.2017.8096054" @default.
- W2964312022 hasPublicationYear "2017" @default.
- W2964312022 type Work @default.
- W2964312022 sameAs 2964312022 @default.
- W2964312022 citedByCount "1" @default.
- W2964312022 countsByYear W29643120222017 @default.
- W2964312022 crossrefType "proceedings-article" @default.
- W2964312022 hasAuthorship W2964312022A5020822083 @default.
- W2964312022 hasBestOaLocation W29643120222 @default.
- W2964312022 hasConcept C102248274 @default.
- W2964312022 hasConcept C105795698 @default.
- W2964312022 hasConcept C11413529 @default.
- W2964312022 hasConcept C118615104 @default.
- W2964312022 hasConcept C121332964 @default.
- W2964312022 hasConcept C122280245 @default.
- W2964312022 hasConcept C12267149 @default.
- W2964312022 hasConcept C134306372 @default.
- W2964312022 hasConcept C153180895 @default.
- W2964312022 hasConcept C154945302 @default.
- W2964312022 hasConcept C158622935 @default.
- W2964312022 hasConcept C159877910 @default.
- W2964312022 hasConcept C163716315 @default.
- W2964312022 hasConcept C17744445 @default.
- W2964312022 hasConcept C191795146 @default.
- W2964312022 hasConcept C199539241 @default.
- W2964312022 hasConcept C33923547 @default.
- W2964312022 hasConcept C41008148 @default.
- W2964312022 hasConcept C62520636 @default.
- W2964312022 hasConcept C72169020 @default.
- W2964312022 hasConcept C74193536 @default.
- W2964312022 hasConceptScore W2964312022C102248274 @default.
- W2964312022 hasConceptScore W2964312022C105795698 @default.
- W2964312022 hasConceptScore W2964312022C11413529 @default.
- W2964312022 hasConceptScore W2964312022C118615104 @default.
- W2964312022 hasConceptScore W2964312022C121332964 @default.
- W2964312022 hasConceptScore W2964312022C122280245 @default.
- W2964312022 hasConceptScore W2964312022C12267149 @default.
- W2964312022 hasConceptScore W2964312022C134306372 @default.
- W2964312022 hasConceptScore W2964312022C153180895 @default.
- W2964312022 hasConceptScore W2964312022C154945302 @default.
- W2964312022 hasConceptScore W2964312022C158622935 @default.
- W2964312022 hasConceptScore W2964312022C159877910 @default.
- W2964312022 hasConceptScore W2964312022C163716315 @default.
- W2964312022 hasConceptScore W2964312022C17744445 @default.
- W2964312022 hasConceptScore W2964312022C191795146 @default.
- W2964312022 hasConceptScore W2964312022C199539241 @default.
- W2964312022 hasConceptScore W2964312022C33923547 @default.
- W2964312022 hasConceptScore W2964312022C41008148 @default.
- W2964312022 hasConceptScore W2964312022C62520636 @default.
- W2964312022 hasConceptScore W2964312022C72169020 @default.
- W2964312022 hasConceptScore W2964312022C74193536 @default.
- W2964312022 hasLocation W29643120221 @default.
- W2964312022 hasLocation W29643120222 @default.
- W2964312022 hasOpenAccess W2964312022 @default.
- W2964312022 hasPrimaryLocation W29643120221 @default.
- W2964312022 hasRelatedWork W1496404219 @default.
- W2964312022 hasRelatedWork W1543722976 @default.
- W2964312022 hasRelatedWork W1576366693 @default.
- W2964312022 hasRelatedWork W1621482170 @default.
- W2964312022 hasRelatedWork W2083002797 @default.
- W2964312022 hasRelatedWork W2190001470 @default.
- W2964312022 hasRelatedWork W2215375112 @default.
- W2964312022 hasRelatedWork W2245793494 @default.
- W2964312022 hasRelatedWork W2397460111 @default.
- W2964312022 hasRelatedWork W2535206775 @default.
- W2964312022 hasRelatedWork W2559832977 @default.
- W2964312022 hasRelatedWork W2564482619 @default.
- W2964312022 hasRelatedWork W2642510702 @default.
- W2964312022 hasRelatedWork W2735269273 @default.
- W2964312022 hasRelatedWork W2741770062 @default.
- W2964312022 hasRelatedWork W2921127954 @default.
- W2964312022 hasRelatedWork W2934764460 @default.
- W2964312022 hasRelatedWork W2949373041 @default.
- W2964312022 hasRelatedWork W2964056769 @default.