Matches in SemOpenAlex for { <https://semopenalex.org/work/W2964328368> ?p ?o ?g. }
- W2964328368 endingPage "633" @default.
- W2964328368 startingPage "614" @default.
- W2964328368 abstract "The strong-form asymmetric kernel-based collocation method, commonly referred to as the Kansa method, is easy to implement and hence is widely used for solving engineering problems and partial differential equations despite the lack of theoretical support. The simple least-squares (LS) formulation, on the other hand, makes the study of its solvability and convergence rather nontrivial. In this paper, we focus on general second order linear elliptic differential equations in $Omega subset mathbb{R}^d$ under Dirichlet boundary conditions. With kernels that reproduce $H^m(Omega)$ and some smoothness assumptions on the solution, we provide conditions for a constrained LS method and a class of weighted LS algorithms to be convergent. Theoretically, for ${max(2,,lceil (d+1)/2 rceil)leq nu leq m}$, we identify some $H^nu(Omega)$ convergent LS formulations that have an optimal error behavior like $h^{{m-nu}}$. For $dleq3$, the proposed methods are optimal in $H^2(Omega)$. We demonstrate the effects of various collocation settings on the respective convergence rates." @default.
- W2964328368 created "2019-07-30" @default.
- W2964328368 creator A5047350288 @default.
- W2964328368 creator A5084054549 @default.
- W2964328368 creator A5085097073 @default.
- W2964328368 date "2018-01-01" @default.
- W2964328368 modified "2023-10-12" @default.
- W2964328368 title "$H^2$-Convergence of Least-Squares Kernel Collocation Methods" @default.
- W2964328368 cites W112187595 @default.
- W2964328368 cites W1834145218 @default.
- W2964328368 cites W1953963377 @default.
- W2964328368 cites W1972998910 @default.
- W2964328368 cites W1978312138 @default.
- W2964328368 cites W1988473367 @default.
- W2964328368 cites W1993071996 @default.
- W2964328368 cites W1999025826 @default.
- W2964328368 cites W2010071402 @default.
- W2964328368 cites W2014377581 @default.
- W2964328368 cites W2014505837 @default.
- W2964328368 cites W2016995064 @default.
- W2964328368 cites W2017142556 @default.
- W2964328368 cites W2021969763 @default.
- W2964328368 cites W2026046436 @default.
- W2964328368 cites W2037520184 @default.
- W2964328368 cites W2037964739 @default.
- W2964328368 cites W2047877145 @default.
- W2964328368 cites W2051169944 @default.
- W2964328368 cites W2055528045 @default.
- W2964328368 cites W2070348613 @default.
- W2964328368 cites W2076699062 @default.
- W2964328368 cites W2088822475 @default.
- W2964328368 cites W2089612054 @default.
- W2964328368 cites W2119719851 @default.
- W2964328368 cites W2149236464 @default.
- W2964328368 cites W2150612352 @default.
- W2964328368 cites W2161591817 @default.
- W2964328368 cites W2344722227 @default.
- W2964328368 cites W2562156244 @default.
- W2964328368 doi "https://doi.org/10.1137/16m1072863" @default.
- W2964328368 hasPublicationYear "2018" @default.
- W2964328368 type Work @default.
- W2964328368 sameAs 2964328368 @default.
- W2964328368 citedByCount "21" @default.
- W2964328368 countsByYear W29643283682017 @default.
- W2964328368 countsByYear W29643283682018 @default.
- W2964328368 countsByYear W29643283682019 @default.
- W2964328368 countsByYear W29643283682020 @default.
- W2964328368 countsByYear W29643283682021 @default.
- W2964328368 countsByYear W29643283682023 @default.
- W2964328368 crossrefType "journal-article" @default.
- W2964328368 hasAuthorship W2964328368A5047350288 @default.
- W2964328368 hasAuthorship W2964328368A5084054549 @default.
- W2964328368 hasAuthorship W2964328368A5085097073 @default.
- W2964328368 hasBestOaLocation W29643283682 @default.
- W2964328368 hasConcept C102634674 @default.
- W2964328368 hasConcept C110167270 @default.
- W2964328368 hasConcept C111472728 @default.
- W2964328368 hasConcept C114614502 @default.
- W2964328368 hasConcept C119857082 @default.
- W2964328368 hasConcept C121332964 @default.
- W2964328368 hasConcept C134306372 @default.
- W2964328368 hasConcept C138885662 @default.
- W2964328368 hasConcept C162324750 @default.
- W2964328368 hasConcept C182310444 @default.
- W2964328368 hasConcept C2126413 @default.
- W2964328368 hasConcept C2777303404 @default.
- W2964328368 hasConcept C2779557605 @default.
- W2964328368 hasConcept C2779560616 @default.
- W2964328368 hasConcept C2780586882 @default.
- W2964328368 hasConcept C28826006 @default.
- W2964328368 hasConcept C33923547 @default.
- W2964328368 hasConcept C41008148 @default.
- W2964328368 hasConcept C50522688 @default.
- W2964328368 hasConcept C51544822 @default.
- W2964328368 hasConcept C62354387 @default.
- W2964328368 hasConcept C62520636 @default.
- W2964328368 hasConcept C74193536 @default.
- W2964328368 hasConcept C78045399 @default.
- W2964328368 hasConcept C80023036 @default.
- W2964328368 hasConceptScore W2964328368C102634674 @default.
- W2964328368 hasConceptScore W2964328368C110167270 @default.
- W2964328368 hasConceptScore W2964328368C111472728 @default.
- W2964328368 hasConceptScore W2964328368C114614502 @default.
- W2964328368 hasConceptScore W2964328368C119857082 @default.
- W2964328368 hasConceptScore W2964328368C121332964 @default.
- W2964328368 hasConceptScore W2964328368C134306372 @default.
- W2964328368 hasConceptScore W2964328368C138885662 @default.
- W2964328368 hasConceptScore W2964328368C162324750 @default.
- W2964328368 hasConceptScore W2964328368C182310444 @default.
- W2964328368 hasConceptScore W2964328368C2126413 @default.
- W2964328368 hasConceptScore W2964328368C2777303404 @default.
- W2964328368 hasConceptScore W2964328368C2779557605 @default.
- W2964328368 hasConceptScore W2964328368C2779560616 @default.
- W2964328368 hasConceptScore W2964328368C2780586882 @default.
- W2964328368 hasConceptScore W2964328368C28826006 @default.
- W2964328368 hasConceptScore W2964328368C33923547 @default.
- W2964328368 hasConceptScore W2964328368C41008148 @default.
- W2964328368 hasConceptScore W2964328368C50522688 @default.