Matches in SemOpenAlex for { <https://semopenalex.org/work/W2964331314> ?p ?o ?g. }
- W2964331314 endingPage "971" @default.
- W2964331314 startingPage "957" @default.
- W2964331314 abstract "Modeling the face aging process is a challenging task due to large and non-linear variations present in different stages of face development. This paper presents a deep model approach for face age progression that can efficiently capture the non-linear aging process and automatically synthesize a series of age-progressed faces in various age ranges. In this approach, we first decompose the long-term age progress into a sequence of short-term changes and model it as a face sequence. The Temporal Deep Restricted Boltzmann Machines based age progression model together with the prototype faces are then constructed to learn the aging transformation between faces in the sequence. In addition, to enhance the wrinkles of faces in the later age ranges, the wrinkle models are further constructed using Restricted Boltzmann Machines to capture their variations in different facial regions. The geometry constraints are also taken into account in the last step for more consistent age-progressed results. The proposed approach is evaluated using various face aging databases, i.e. FG-NET, Cross-Age Celebrity Dataset (CACD) and MORPH, and our collected large-scale aging database named AginG Faces in the Wild (AGFW). In addition, when ground-truth age is not available for input image, our proposed system is able to automatically estimate the age of the input face before aging process is employed." @default.
- W2964331314 created "2019-07-30" @default.
- W2964331314 creator A5007006341 @default.
- W2964331314 creator A5016711912 @default.
- W2964331314 creator A5023840296 @default.
- W2964331314 creator A5024109615 @default.
- W2964331314 creator A5056226189 @default.
- W2964331314 creator A5057959136 @default.
- W2964331314 date "2019-02-27" @default.
- W2964331314 modified "2023-09-23" @default.
- W2964331314 title "Learning from Longitudinal Face Demonstration—Where Tractable Deep Modeling Meets Inverse Reinforcement Learning" @default.
- W2964331314 cites W1543101185 @default.
- W2964331314 cites W1772300941 @default.
- W2964331314 cites W1978370894 @default.
- W2964331314 cites W2009088607 @default.
- W2964331314 cites W2014102203 @default.
- W2964331314 cites W2030098377 @default.
- W2964331314 cites W2039140324 @default.
- W2964331314 cites W2061759159 @default.
- W2964331314 cites W2081023672 @default.
- W2964331314 cites W2097433204 @default.
- W2964331314 cites W2103077782 @default.
- W2964331314 cites W2105026179 @default.
- W2964331314 cites W2106488920 @default.
- W2964331314 cites W2108039655 @default.
- W2964331314 cites W2115096495 @default.
- W2964331314 cites W2115651492 @default.
- W2964331314 cites W2123497994 @default.
- W2964331314 cites W2134213389 @default.
- W2964331314 cites W2136074653 @default.
- W2964331314 cites W2147278565 @default.
- W2964331314 cites W2151386286 @default.
- W2964331314 cites W2152826865 @default.
- W2964331314 cites W2153072655 @default.
- W2964331314 cites W2163626514 @default.
- W2964331314 cites W2233737587 @default.
- W2964331314 cites W2413901322 @default.
- W2964331314 cites W2440214111 @default.
- W2964331314 cites W2473439532 @default.
- W2964331314 cites W2488236012 @default.
- W2964331314 cites W2510725918 @default.
- W2964331314 cites W2587706859 @default.
- W2964331314 cites W2592168458 @default.
- W2964331314 cites W2592232824 @default.
- W2964331314 cites W2604117447 @default.
- W2964331314 cites W2731384148 @default.
- W2964331314 cites W2748140016 @default.
- W2964331314 cites W2777551880 @default.
- W2964331314 cites W2798853091 @default.
- W2964331314 cites W2798868324 @default.
- W2964331314 cites W2807323414 @default.
- W2964331314 cites W2962786991 @default.
- W2964331314 cites W2962851632 @default.
- W2964331314 cites W2963391470 @default.
- W2964331314 cites W2963671154 @default.
- W2964331314 cites W630471727 @default.
- W2964331314 doi "https://doi.org/10.1007/s11263-019-01165-5" @default.
- W2964331314 hasPublicationYear "2019" @default.
- W2964331314 type Work @default.
- W2964331314 sameAs 2964331314 @default.
- W2964331314 citedByCount "13" @default.
- W2964331314 countsByYear W29643313142020 @default.
- W2964331314 countsByYear W29643313142021 @default.
- W2964331314 countsByYear W29643313142022 @default.
- W2964331314 crossrefType "journal-article" @default.
- W2964331314 hasAuthorship W2964331314A5007006341 @default.
- W2964331314 hasAuthorship W2964331314A5016711912 @default.
- W2964331314 hasAuthorship W2964331314A5023840296 @default.
- W2964331314 hasAuthorship W2964331314A5024109615 @default.
- W2964331314 hasAuthorship W2964331314A5056226189 @default.
- W2964331314 hasAuthorship W2964331314A5057959136 @default.
- W2964331314 hasBestOaLocation W29643313142 @default.
- W2964331314 hasConcept C104317684 @default.
- W2964331314 hasConcept C108583219 @default.
- W2964331314 hasConcept C111919701 @default.
- W2964331314 hasConcept C119857082 @default.
- W2964331314 hasConcept C144024400 @default.
- W2964331314 hasConcept C153180895 @default.
- W2964331314 hasConcept C154945302 @default.
- W2964331314 hasConcept C185592680 @default.
- W2964331314 hasConcept C192576344 @default.
- W2964331314 hasConcept C199354608 @default.
- W2964331314 hasConcept C204241405 @default.
- W2964331314 hasConcept C2778112365 @default.
- W2964331314 hasConcept C2779304628 @default.
- W2964331314 hasConcept C31510193 @default.
- W2964331314 hasConcept C31972630 @default.
- W2964331314 hasConcept C36289849 @default.
- W2964331314 hasConcept C41008148 @default.
- W2964331314 hasConcept C54355233 @default.
- W2964331314 hasConcept C55493867 @default.
- W2964331314 hasConcept C86803240 @default.
- W2964331314 hasConcept C98045186 @default.
- W2964331314 hasConceptScore W2964331314C104317684 @default.
- W2964331314 hasConceptScore W2964331314C108583219 @default.
- W2964331314 hasConceptScore W2964331314C111919701 @default.
- W2964331314 hasConceptScore W2964331314C119857082 @default.
- W2964331314 hasConceptScore W2964331314C144024400 @default.