Matches in SemOpenAlex for { <https://semopenalex.org/work/W2964332149> ?p ?o ?g. }
- W2964332149 endingPage "1575" @default.
- W2964332149 startingPage "1555" @default.
- W2964332149 abstract "Given a function field $K$ and $phi in K[x]$, we study two finiteness questions related to iteration of $phi$: whether all but finitely many terms of an orbit of $phi$ must possess a primitive prime divisor, and whether the Galois groups of iterates of $phi$ must have finite index in their natural overgroup $operatorname {Aut}(T_d)$, where $T_d$ is the infinite tree of iterated preimages of $0$ under $phi$. We focus particularly on the case where $K$ has characteristic $p$, where far less is known. We resolve the first question in the affirmative for a large (in particular, Zariski-dense) subset of the space of degree-$d$ polynomials. The main step in the proof is to rule out certain algebraic relations among points in backwards orbits; these relations are given by a type of first-order differential equation called a Riccati equation. We then apply our result on primitive prime divisors and adapt a method of Looper to produce new families of polynomials in every characteristic for which the second question has an affirmative answer. We also prove that almost all quadratic polynomials over $mathbb {Q}(t)$ have iterates whose Galois group is all of $operatorname {Aut}(T_d)$." @default.
- W2964332149 created "2019-07-30" @default.
- W2964332149 creator A5001570714 @default.
- W2964332149 creator A5028002831 @default.
- W2964332149 date "2019-12-10" @default.
- W2964332149 modified "2023-10-02" @default.
- W2964332149 title "Riccati equations and polynomial dynamics over function fields" @default.
- W2964332149 cites W105883996 @default.
- W2964332149 cites W1486898453 @default.
- W2964332149 cites W1501162952 @default.
- W2964332149 cites W1562839392 @default.
- W2964332149 cites W1563022473 @default.
- W2964332149 cites W1587054906 @default.
- W2964332149 cites W1610469689 @default.
- W2964332149 cites W1970181213 @default.
- W2964332149 cites W1974748699 @default.
- W2964332149 cites W1977410681 @default.
- W2964332149 cites W2009658263 @default.
- W2964332149 cites W2027147916 @default.
- W2964332149 cites W2057642197 @default.
- W2964332149 cites W2061107511 @default.
- W2964332149 cites W2064804790 @default.
- W2964332149 cites W2066134256 @default.
- W2964332149 cites W2072788806 @default.
- W2964332149 cites W2080305479 @default.
- W2964332149 cites W2106838854 @default.
- W2964332149 cites W2112805485 @default.
- W2964332149 cites W213347989 @default.
- W2964332149 cites W2169565061 @default.
- W2964332149 cites W2328675509 @default.
- W2964332149 cites W2584764842 @default.
- W2964332149 cites W2962779262 @default.
- W2964332149 cites W2962890721 @default.
- W2964332149 cites W2963053383 @default.
- W2964332149 cites W2963722513 @default.
- W2964332149 cites W2963903295 @default.
- W2964332149 cites W2964330232 @default.
- W2964332149 cites W3007836994 @default.
- W2964332149 cites W3094547132 @default.
- W2964332149 cites W3099313575 @default.
- W2964332149 cites W3103163627 @default.
- W2964332149 cites W3105364416 @default.
- W2964332149 cites W315047097 @default.
- W2964332149 doi "https://doi.org/10.1090/tran/7855" @default.
- W2964332149 hasPublicationYear "2019" @default.
- W2964332149 type Work @default.
- W2964332149 sameAs 2964332149 @default.
- W2964332149 citedByCount "5" @default.
- W2964332149 countsByYear W29643321492020 @default.
- W2964332149 countsByYear W29643321492021 @default.
- W2964332149 countsByYear W29643321492023 @default.
- W2964332149 crossrefType "journal-article" @default.
- W2964332149 hasAuthorship W2964332149A5001570714 @default.
- W2964332149 hasAuthorship W2964332149A5028002831 @default.
- W2964332149 hasBestOaLocation W29643321491 @default.
- W2964332149 hasConcept C10138342 @default.
- W2964332149 hasConcept C113174947 @default.
- W2964332149 hasConcept C114614502 @default.
- W2964332149 hasConcept C118615104 @default.
- W2964332149 hasConcept C121332964 @default.
- W2964332149 hasConcept C127413603 @default.
- W2964332149 hasConcept C134306372 @default.
- W2964332149 hasConcept C14036430 @default.
- W2964332149 hasConcept C140479938 @default.
- W2964332149 hasConcept C146978453 @default.
- W2964332149 hasConcept C162324750 @default.
- W2964332149 hasConcept C182306322 @default.
- W2964332149 hasConcept C184992742 @default.
- W2964332149 hasConcept C196644772 @default.
- W2964332149 hasConcept C202444582 @default.
- W2964332149 hasConcept C24890656 @default.
- W2964332149 hasConcept C2775997480 @default.
- W2964332149 hasConcept C2778795570 @default.
- W2964332149 hasConcept C33923547 @default.
- W2964332149 hasConcept C67536143 @default.
- W2964332149 hasConcept C77926391 @default.
- W2964332149 hasConcept C78458016 @default.
- W2964332149 hasConcept C86803240 @default.
- W2964332149 hasConcept C90119067 @default.
- W2964332149 hasConcept C9652623 @default.
- W2964332149 hasConceptScore W2964332149C10138342 @default.
- W2964332149 hasConceptScore W2964332149C113174947 @default.
- W2964332149 hasConceptScore W2964332149C114614502 @default.
- W2964332149 hasConceptScore W2964332149C118615104 @default.
- W2964332149 hasConceptScore W2964332149C121332964 @default.
- W2964332149 hasConceptScore W2964332149C127413603 @default.
- W2964332149 hasConceptScore W2964332149C134306372 @default.
- W2964332149 hasConceptScore W2964332149C14036430 @default.
- W2964332149 hasConceptScore W2964332149C140479938 @default.
- W2964332149 hasConceptScore W2964332149C146978453 @default.
- W2964332149 hasConceptScore W2964332149C162324750 @default.
- W2964332149 hasConceptScore W2964332149C182306322 @default.
- W2964332149 hasConceptScore W2964332149C184992742 @default.
- W2964332149 hasConceptScore W2964332149C196644772 @default.
- W2964332149 hasConceptScore W2964332149C202444582 @default.
- W2964332149 hasConceptScore W2964332149C24890656 @default.
- W2964332149 hasConceptScore W2964332149C2775997480 @default.
- W2964332149 hasConceptScore W2964332149C2778795570 @default.