Matches in SemOpenAlex for { <https://semopenalex.org/work/W2964336535> ?p ?o ?g. }
Showing items 1 to 79 of
79
with 100 items per page.
- W2964336535 abstract "We consider the stochastic matching problem. An edge-weighted general (i.e., not necessarily bipartite) graph G(V, E) is given in the input, where each edge in E is realized independently with probability p ; the realization is initially unknown, however, we are able to query the edges to determine whether they are realized. The goal is to query only a small number of edges to find a realized matching that is sufficiently close to the maximum matching among all realized edges. The stochastic matching problem has received a considerable attention during the past decade after the initial paper of Chen et al. [ICALP'09] because of its numerous real-world applications in kidney-exchange, matchmaking services, online labor markets, and advertisements. Most relevant to our work are the recent papers of Blum et al. [EC'15], Assadi et al. [EC'16, EC'17] and Maehara and Yamaguchi~[SODA'18] that consider the same model of stochastic matching. Our main result is an adaptive algorithm that for any arbitrarily small ε > 0, finds a (1-ε)-approximation in expectation, by querying only O(1) edges per vertex. We further show that our approach leads to a (1/2-ε)-approximate non-adaptive algorithm that also uses $O(1)$ edges per vertex. Prior to our work, no nontrivial approximation was known for weighted graphs using a constant per-vertex budget. The state-of-the-art adaptive (resp. non-adaptive) algorithm of Maehara and Yamaguchi achieves a (1-ε)-approximation (resp. (1/2-ε)-approximation) by querying up to O(w łogn) edges per vertex where w denotes the maximum integer edge-weight. Our result is a substantial improvement over this bound and has an appealing message: No matter what the structure of the input graph is, one can get arbitrarily close to the optimum solution by querying only a constant number of edges per vertex. To obtain our results, we introduce novel properties of a generalization of augmenting paths to weighted matchings that may be of independent interest." @default.
- W2964336535 created "2019-07-30" @default.
- W2964336535 creator A5025934584 @default.
- W2964336535 creator A5074375305 @default.
- W2964336535 date "2018-06-11" @default.
- W2964336535 modified "2023-09-23" @default.
- W2964336535 title "Almost Optimal Stochastic Weighted Matching with Few Queries" @default.
- W2964336535 cites W1548308776 @default.
- W2964336535 cites W1788659242 @default.
- W2964336535 cites W1909971775 @default.
- W2964336535 cites W2010428983 @default.
- W2964336535 cites W2086698286 @default.
- W2964336535 cites W2149744080 @default.
- W2964336535 cites W2199670402 @default.
- W2964336535 cites W2293140664 @default.
- W2964336535 cites W2492999734 @default.
- W2964336535 cites W2612033967 @default.
- W2964336535 cites W3122360041 @default.
- W2964336535 cites W4233172940 @default.
- W2964336535 cites W4233190915 @default.
- W2964336535 cites W4299842315 @default.
- W2964336535 cites W68213954 @default.
- W2964336535 doi "https://doi.org/10.1145/3219166.3219226" @default.
- W2964336535 hasPublicationYear "2018" @default.
- W2964336535 type Work @default.
- W2964336535 sameAs 2964336535 @default.
- W2964336535 citedByCount "16" @default.
- W2964336535 countsByYear W29643365352017 @default.
- W2964336535 countsByYear W29643365352018 @default.
- W2964336535 countsByYear W29643365352019 @default.
- W2964336535 countsByYear W29643365352020 @default.
- W2964336535 countsByYear W29643365352022 @default.
- W2964336535 countsByYear W29643365352023 @default.
- W2964336535 crossrefType "proceedings-article" @default.
- W2964336535 hasAuthorship W2964336535A5025934584 @default.
- W2964336535 hasAuthorship W2964336535A5074375305 @default.
- W2964336535 hasBestOaLocation W29643365352 @default.
- W2964336535 hasConcept C105795698 @default.
- W2964336535 hasConcept C114614502 @default.
- W2964336535 hasConcept C118615104 @default.
- W2964336535 hasConcept C132525143 @default.
- W2964336535 hasConcept C148764684 @default.
- W2964336535 hasConcept C165064840 @default.
- W2964336535 hasConcept C197657726 @default.
- W2964336535 hasConcept C2781089630 @default.
- W2964336535 hasConcept C33923547 @default.
- W2964336535 hasConcept C40687702 @default.
- W2964336535 hasConcept C41008148 @default.
- W2964336535 hasConcept C80899671 @default.
- W2964336535 hasConceptScore W2964336535C105795698 @default.
- W2964336535 hasConceptScore W2964336535C114614502 @default.
- W2964336535 hasConceptScore W2964336535C118615104 @default.
- W2964336535 hasConceptScore W2964336535C132525143 @default.
- W2964336535 hasConceptScore W2964336535C148764684 @default.
- W2964336535 hasConceptScore W2964336535C165064840 @default.
- W2964336535 hasConceptScore W2964336535C197657726 @default.
- W2964336535 hasConceptScore W2964336535C2781089630 @default.
- W2964336535 hasConceptScore W2964336535C33923547 @default.
- W2964336535 hasConceptScore W2964336535C40687702 @default.
- W2964336535 hasConceptScore W2964336535C41008148 @default.
- W2964336535 hasConceptScore W2964336535C80899671 @default.
- W2964336535 hasLocation W29643365351 @default.
- W2964336535 hasLocation W29643365352 @default.
- W2964336535 hasOpenAccess W2964336535 @default.
- W2964336535 hasPrimaryLocation W29643365351 @default.
- W2964336535 hasRelatedWork W2026407613 @default.
- W2964336535 hasRelatedWork W2063222520 @default.
- W2964336535 hasRelatedWork W2543596229 @default.
- W2964336535 hasRelatedWork W2604647807 @default.
- W2964336535 hasRelatedWork W2748469983 @default.
- W2964336535 hasRelatedWork W2799145821 @default.
- W2964336535 hasRelatedWork W4283798683 @default.
- W2964336535 hasRelatedWork W4299577021 @default.
- W2964336535 hasRelatedWork W4301519214 @default.
- W2964336535 hasRelatedWork W4320022211 @default.
- W2964336535 isParatext "false" @default.
- W2964336535 isRetracted "false" @default.
- W2964336535 magId "2964336535" @default.
- W2964336535 workType "article" @default.