Matches in SemOpenAlex for { <https://semopenalex.org/work/W2964356616> ?p ?o ?g. }
- W2964356616 endingPage "104098" @default.
- W2964356616 startingPage "104098" @default.
- W2964356616 abstract "Soft sensors play an important role in process industries for monitoring and control of key quality variables, and calibration of analyzers. Owing to the merits of fast learning speed and good generalization performance, extreme learning machines (ELMs) have been widely accepted to develop soft sensor models for nonlinear industrial processes. However, there still exist some challenges in developing high-accuracy ELM-based soft sensors. Specifically, ELMs with shallow networks seem to have inadequate representation capabilities for complex nonlinearities, while ELMs with deep networks have difficulties in determining the number of hidden layers and hidden nodes for each layer which readily results in overfitting. In addition, in soft sensor applications, labeled samples are usually limited due to technical or economical reasons, which adds obstacles to model training. To deal with these issues, we propose a semi-supervised probabilistic mixture of ELMs (referred to as the ‘S2PMELMs’). In the S2PMELMs, localized ELMs are trained and combined, which are completed in a unified probabilistic way such that process nonlinearities and uncertainties can be accommodated. Moreover, based on the variational Bayes expectation–maximization algorithm, we develop a training algorithm for the S2PMELMs, where unlabeled samples are able to be exploited and the regularization parameter for each ELM can be adaptively determined. The performance of the S2PMELMs is evaluated through two real-world industrial processes, and the results demonstrate the advantages of the proposed method in contrast with several state-of-the-art relevant soft sensing approaches." @default.
- W2964356616 created "2019-08-13" @default.
- W2964356616 creator A5025210418 @default.
- W2964356616 creator A5044970157 @default.
- W2964356616 creator A5055614144 @default.
- W2964356616 date "2019-10-01" @default.
- W2964356616 modified "2023-10-14" @default.
- W2964356616 title "Nonlinear industrial soft sensor development based on semi-supervised probabilistic mixture of extreme learning machines" @default.
- W2964356616 cites W1980713635 @default.
- W2964356616 cites W1986096622 @default.
- W2964356616 cites W2001494200 @default.
- W2964356616 cites W2007603454 @default.
- W2964356616 cites W2019797988 @default.
- W2964356616 cites W2026131661 @default.
- W2964356616 cites W2040449196 @default.
- W2964356616 cites W2042184006 @default.
- W2964356616 cites W2065398998 @default.
- W2964356616 cites W2076063813 @default.
- W2964356616 cites W2085862958 @default.
- W2964356616 cites W2100495367 @default.
- W2964356616 cites W2111072639 @default.
- W2964356616 cites W2118899040 @default.
- W2964356616 cites W2121971770 @default.
- W2964356616 cites W2136602355 @default.
- W2964356616 cites W2141695047 @default.
- W2964356616 cites W2207744263 @default.
- W2964356616 cites W2261061938 @default.
- W2964356616 cites W2301541953 @default.
- W2964356616 cites W2305850980 @default.
- W2964356616 cites W2397015241 @default.
- W2964356616 cites W2408812858 @default.
- W2964356616 cites W2539756354 @default.
- W2964356616 cites W2567582497 @default.
- W2964356616 cites W2595675930 @default.
- W2964356616 cites W2605061423 @default.
- W2964356616 cites W2742763523 @default.
- W2964356616 cites W2759373267 @default.
- W2964356616 cites W2767124238 @default.
- W2964356616 cites W2788805965 @default.
- W2964356616 cites W2789440825 @default.
- W2964356616 cites W2794135378 @default.
- W2964356616 cites W2800053122 @default.
- W2964356616 cites W2889017122 @default.
- W2964356616 cites W2893120105 @default.
- W2964356616 cites W2896731226 @default.
- W2964356616 cites W2898324827 @default.
- W2964356616 cites W2903530788 @default.
- W2964356616 cites W2919115771 @default.
- W2964356616 doi "https://doi.org/10.1016/j.conengprac.2019.07.016" @default.
- W2964356616 hasPublicationYear "2019" @default.
- W2964356616 type Work @default.
- W2964356616 sameAs 2964356616 @default.
- W2964356616 citedByCount "32" @default.
- W2964356616 countsByYear W29643566162020 @default.
- W2964356616 countsByYear W29643566162021 @default.
- W2964356616 countsByYear W29643566162022 @default.
- W2964356616 countsByYear W29643566162023 @default.
- W2964356616 crossrefType "journal-article" @default.
- W2964356616 hasAuthorship W2964356616A5025210418 @default.
- W2964356616 hasAuthorship W2964356616A5044970157 @default.
- W2964356616 hasAuthorship W2964356616A5055614144 @default.
- W2964356616 hasConcept C111919701 @default.
- W2964356616 hasConcept C115575686 @default.
- W2964356616 hasConcept C119857082 @default.
- W2964356616 hasConcept C121332964 @default.
- W2964356616 hasConcept C126255220 @default.
- W2964356616 hasConcept C134306372 @default.
- W2964356616 hasConcept C154945302 @default.
- W2964356616 hasConcept C158622935 @default.
- W2964356616 hasConcept C177148314 @default.
- W2964356616 hasConcept C22019652 @default.
- W2964356616 hasConcept C2776135515 @default.
- W2964356616 hasConcept C2776330181 @default.
- W2964356616 hasConcept C2780150128 @default.
- W2964356616 hasConcept C33923547 @default.
- W2964356616 hasConcept C41008148 @default.
- W2964356616 hasConcept C49937458 @default.
- W2964356616 hasConcept C50644808 @default.
- W2964356616 hasConcept C62520636 @default.
- W2964356616 hasConcept C98045186 @default.
- W2964356616 hasConceptScore W2964356616C111919701 @default.
- W2964356616 hasConceptScore W2964356616C115575686 @default.
- W2964356616 hasConceptScore W2964356616C119857082 @default.
- W2964356616 hasConceptScore W2964356616C121332964 @default.
- W2964356616 hasConceptScore W2964356616C126255220 @default.
- W2964356616 hasConceptScore W2964356616C134306372 @default.
- W2964356616 hasConceptScore W2964356616C154945302 @default.
- W2964356616 hasConceptScore W2964356616C158622935 @default.
- W2964356616 hasConceptScore W2964356616C177148314 @default.
- W2964356616 hasConceptScore W2964356616C22019652 @default.
- W2964356616 hasConceptScore W2964356616C2776135515 @default.
- W2964356616 hasConceptScore W2964356616C2776330181 @default.
- W2964356616 hasConceptScore W2964356616C2780150128 @default.
- W2964356616 hasConceptScore W2964356616C33923547 @default.
- W2964356616 hasConceptScore W2964356616C41008148 @default.
- W2964356616 hasConceptScore W2964356616C49937458 @default.
- W2964356616 hasConceptScore W2964356616C50644808 @default.
- W2964356616 hasConceptScore W2964356616C62520636 @default.